什么地什么| 做爱时间短吃什么药好| 肋骨神经痛吃什么药| 摆摊卖什么好| 1989年五行属什么| 医院信息科是做什么| 吃什么不容易怀孕| 彩蛋是什么意思| 幡是什么意思| 吃辣椒有什么好处| 烧心是什么原因造成的| 硒是什么元素| 千岛酱是什么味道| 米是什么结构| 孩子发烧呕吐是什么原因| 20岁属什么的生肖| 五光十色是什么意思| 舌头发白吃什么药| 什么是花青素| 女属蛇的和什么属相最配| 渚是什么意思| 梦见刮胡子是什么意思| 6朵玫瑰代表什么意思| 血小板升高是什么原因| 护照办理需要什么材料| 排骨蒸什么好吃| 什么的风雨| 密送是什么意思| 人比黄花瘦是什么意思| 为什么一到晚上就痒| 背锅侠是什么意思| 生命是什么意思| 蒙古古代叫什么| 同工同酬什么意思| 燕麦是什么| 狐狸是什么科| 胃药吃多了有什么副作用| 不时之需是什么意思| 男女身份证号码有什么区分| 走路快的人是什么性格| 瞽叟是什么意思| 额头长痘痘是什么原因怎么调理| 什么茶不能喝脑筋急转弯| 褥疮是什么| 吃虫草有什么好处| 尿血是什么原因| 素面朝天什么生肖| 阑尾炎吃什么药见效快| 乌豆和黑豆有什么区别| 双侧甲状腺弥漫病变是什么意思| 燕子吃什么| 女人喝咖啡有什么好处和坏处| 胃酸是什么症状| 早上起来手麻是什么原因| 揶揄什么意思| 皮肤瘙痒用什么药膏| 什么的骆驼| 什么是前置胎盘| 葡萄糖属于什么糖| 太后是皇上的什么人| 阳气不足是什么意思| 给花施肥用什么肥料| 农业户口和居民户口有什么区别| 心肌缺血吃什么药好| 小狗拉稀 吃什么药| 四月二十六是什么星座| 佐匹克隆是什么药| 涤棉是什么面料| 胰管扩张是什么意思| min代表什么意思| 长期喝酒有什么危害| 什么样的树| 做免疫组化意味什么| 18年是什么婚| 月球表面的坑叫什么| 什么人容易得脑梗| edm是什么意思| 笋壳鱼是什么鱼| 苦荞是什么| 吃什么可以提高新陈代谢| 膨鱼鳃用什么搭配煲汤| 桥本氏甲状腺炎是什么意思| 卵巢保养吃什么好| 腔梗和脑梗有什么区别| 运字是什么结构| pci是什么| 胃功能四项检查是什么| 清末民初是什么时候| 生理期不能吃什么水果| 孩子呼吸道感染吃什么药效果最好| 阴道流黄水是什么原因| 肚子咕噜咕噜响是什么原因| 轻度脂肪肝吃什么药| 王一博是什么星座| 001是什么意思| bossini是什么牌子| 石斛的作用是什么| 查染色体挂什么科| 小朋友膝盖疼是什么原因| lord什么意思| 返聘是什么意思| 二十三岁属什么生肖| z什么意思| 指是什么意思| tap是什么意思| 世界上最大的单位是什么| 男人尿多是什么原因| 什么东西清肺最好| ons是什么意思| 雪花粉是什么面粉| 男性雄激素低吃什么药| 肝脏是什么功能| 副乳是什么原因造成的| 性病都有什么| 什么是地中海贫血| 烫伤用什么药膏| 水漫金山是什么生肖| edsheeran为什么叫黄老板| 身上长小肉揪是什么原因| 等闲之辈是什么意思| 背疼应该挂什么科| 手脱皮吃什么药| 彩超能检查什么| 纾是什么意思| 万条垂下绿丝绦是什么季节| 伊朗用什么货币| rsl是什么意思| 左眼跳女人是什么预兆| 女人脚底有痣代表什么| 吃什么有助于长高| 出现幻觉幻听是什么心理疾病| 不务正业是什么意思| 春天像什么| 涧是什么意思| 吃什么药可以延长性功能| 血糖高适合吃什么| 汶字五行属什么| 睡觉出汗是什么原因| 今年是什么属相| 双脚浮肿是什么原因| 为什么睡觉总是做梦| 空心菜什么人不能吃| 胃不好吃什么水果| 坤沙酒是什么意思| 有机可乘是什么意思| 什么是随机血糖| 奶粉二段和三段有什么区别| 无缝衔接什么意思| 驾驶证扣6分有什么影响| 心疼是什么意思| 过敏输液输什么药好| 绿豆芽不能和什么一起吃| 女性漏尿是什么原因| 四个火读什么字| 顽固是什么意思| 芒果有什么好处和坏处| 九牧王男装是什么档次| pin是什么| 腐竹和什么一起炒好吃| 减肥吃什么蔬菜| 么么叽是什么意思| 劳您费心了什么意思| 灰指甲用什么药好| 薏米是什么米| 脉搏低是什么原因| 什么叫紫癜| 文艺兵是干什么的| 梦见掉牙齿是什么征兆| 用盐水洗脸有什么效果| 鹅蛋脸适合什么样的发型| 一个黑一个出读什么| 飞的第一笔是什么| 人设什么意思| 被蚊子咬了涂什么药膏| 突然便秘是什么原因引起的| 胃不好吃什么养胃水果| 胆囊结石挂什么科| 2000年是属什么生肖| 脾胃虚弱吃什么药最好| 发烧呕吐是什么原因| 什么东西补肾最好| 为什么会阑尾炎| 3什么意思| 3月11日是什么星座| 六月份适合种什么蔬菜| 肚子疼应该挂什么科| 五心烦热是什么意思| 大肠在人体什么位置图| 不知道为什么| 喝水多尿多是什么原因男性| 头爱出汗是什么原因| 痛风挂什么科室| 午字五行属什么| 懋是什么意思| 肾气虚吃什么中成药| 93年属鸡的是什么命| 戒的部首是什么| 一什么摇篮| 农历六月初六是什么节| 1993年属鸡是什么命| 产能过剩是什么意思| 布洛芬有什么作用| 实字五行属什么| 腊月二十三是什么星座| 心脏早搏是什么意思| 尾盘拉升意味着什么| 肺部肿瘤吃什么好| 排卵期出血是什么样的| 唇上有痣代表什么| 装修都包括什么| 精梳棉是什么面料| 窦性心律过缓什么意思| 小肚子突出是什么原因| 珠胎暗结是什么意思| 胎心不稳定是什么原因| 偶数和奇数是什么意思| 女人切除子宫有什么影响| 阿奇霉素主治什么| 珍珠粉加蜂蜜做面膜有什么作用| 什么是铅中毒| 爆缸是什么意思| 梦见发洪水是什么征兆| 典狱长是什么意思| 阴道干涩用什么药| 震仰盂什么意思| 鬼迷心窍是什么生肖| 儿童补钙吃什么| 舌头溃疡吃什么药| 闪回是什么意思| 阴囊湿疹挂什么科| 兔子尾巴像什么| 产后第一次来月经是什么颜色| loho眼镜属于什么档次| 深棕色是什么颜色| 什么什么纸贵| 小猫为什么会踩奶| 自控能力是什么意思| 吃三七粉不能吃什么| 黄昏是什么时候| 梦见参加葬礼是什么意思| 为什么正骨后几天越来越疼| bella是什么意思| 后背发冷发凉属于什么症状| 不尽人意是什么意思| 什么争鸣成语| 反差萌是什么意思| 普门品是什么意思| 感冒拉肚子吃什么药| 卵泡刺激素是什么意思| 什么时候打仗| 属实是什么意思| 虐心是什么意思| 孕妇缺碘对胎儿有什么影响| 喉咙发痒咳嗽吃什么药| 机是什么生肖| 芒硝是什么东西| 蒸馏酒是什么酒| 棺材用什么木材做最好| 双卵巢是什么意思| 吃脆骨有什么好处| 梦见蛇是什么意思| 温吞是什么意思| 过誉是什么意思| 长期吃面条对身体有什么影响| 百度Jump to content

宝宝晚上睡觉翻来覆去 小孩晚上睡觉不踏实怎么办?

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 13:42, 23 April 2025 (Approximate POMDP solutions: clean up, replaced: | journal=Journal of Artificial Intelligence Research (JAIR) → | journal=Journal of Artificial Intelligence Research). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
百度   王爱国强调,开展“两学一做”,要学而做,知行合一。

A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a sensor model (the probability distribution of different observations given the underlying state) and the underlying MDP. Unlike the policy function in MDP which maps the underlying states to the actions, POMDP's policy is a mapping from the history of observations (or belief states) to the actions.

The POMDP framework is general enough to model a variety of real-world sequential decision processes. Applications include robot navigation problems, machine maintenance, and planning under uncertainty in general. The general framework of Markov decision processes with imperfect information was described by Karl Johan ?str?m in 1965[1] in the case of a discrete state space, and it was further studied in the operations research community where the acronym POMDP was coined. It was later adapted for problems in artificial intelligence and automated planning by Leslie P. Kaelbling and Michael L. Littman.[2]

An exact solution to a POMDP yields the optimal action for each possible belief over the world states. The optimal action maximizes the expected reward (or minimizes the cost) of the agent over a possibly infinite horizon. The sequence of optimal actions is known as the optimal policy of the agent for interacting with its environment.

Definition

[edit]

Formal definition

[edit]

A discrete-time POMDP models the relationship between an agent and its environment. Formally, a POMDP is a 7-tuple , where

  • is a set of states,
  • is a set of actions,
  • is a set of conditional transition probabilities between states,
  • is the reward function.
  • is a set of observations,
  • is a set of conditional observation probabilities, and
  • is the discount factor.

At each time period, the environment is in some state . The agent takes an action , which causes the environment to transition to state with probability . At the same time, the agent receives an observation which depends on the new state of the environment, , and on the just taken action, , with probability (or sometimes depending on the sensor model). Finally, the agent receives a reward equal to . Then the process repeats. The goal is for the agent to choose actions at each time step that maximize its expected future discounted reward: , where is the reward earned at time . The discount factor determines how much immediate rewards are favored over more distant rewards. When the agent only cares about which action will yield the largest expected immediate reward; when the agent cares about maximizing the expected sum of future rewards.

Discussion

[edit]

Because the agent does not directly observe the environment's state, the agent must make decisions under uncertainty of the true environment state. However, by interacting with the environment and receiving observations, the agent may update its belief in the true state by updating the probability distribution of the current state. A consequence of this property is that the optimal behavior may often include (information gathering) actions that are taken purely because they improve the agent's estimate of the current state, thereby allowing it to make better decisions in the future.

It is instructive to compare the above definition with the definition of a Markov decision process. An MDP does not include the observation set, because the agent always knows with certainty the environment's current state. Alternatively, an MDP can be reformulated as a POMDP by setting the observation set to be equal to the set of states and defining the observation conditional probabilities to deterministically select the observation that corresponds to the true state.

Belief update

[edit]

After having taken the action and observing , an agent needs to update its belief in the state the environment may (or not) be in. Since the state is Markovian (by assumption), maintaining a belief over the states solely requires knowledge of the previous belief state, the action taken, and the current observation. The operation is denoted . Below we describe how this belief update is computed.

After reaching , the agent observes with probability . Let be a probability distribution over the state space . denotes the probability that the environment is in state . Given , then after taking action and observing ,

where is a normalizing constant with .

Belief MDP

[edit]

A Markovian belief state allows a POMDP to be formulated as a Markov decision process where every belief is a state. The resulting belief MDP will thus be defined on a continuous state space (even if the "originating" POMDP has a finite number of states: there are infinite belief states (in ) because there are an infinite number of probability distributions over the states (of )).[2]

Formally, the belief MDP is defined as a tuple where

  • is the set of belief states over the POMDP states,
  • is the same finite set of action as for the original POMDP,
  • is the belief state transition function,
  • is the reward function on belief states,
  • is the discount factor equal to the in the original POMDP.

Of these, and need to be derived from the original POMDP. is

where is the value derived in the previous section and

The belief MDP reward function () is the expected reward from the POMDP reward function over the belief state distribution:

.

The belief MDP is not partially observable anymore, since at any given time the agent knows its belief, and by extension the state of the belief MDP.

Policy and value function

[edit]

Unlike the "originating" POMDP (where each action is available from only one state), in the corresponding Belief MDP all belief states allow all actions, since you (almost) always have some probability of believing you are in any (originating) state. As such, specifies an action for any belief .

Here it is assumed the objective is to maximize the expected total discounted reward over an infinite horizon. When defines a cost, the objective becomes the minimization of the expected cost.

The expected reward for policy starting from belief is defined as

where is the discount factor. The optimal policy is obtained by optimizing the long-term reward.

where is the initial belief.

The optimal policy, denoted by , yields the highest expected reward value for each belief state, compactly represented by the optimal value function . This value function is solution to the Bellman optimality equation:

For finite-horizon POMDPs, the optimal value function is piecewise-linear and convex.[3] It can be represented as a finite set of vectors. In the infinite-horizon formulation, a finite vector set can approximate arbitrarily closely, whose shape remains convex. Value iteration applies dynamic programming update to gradually improve on the value until convergence to an -optimal value function, and preserves its piecewise linearity and convexity.[4] By improving the value, the policy is implicitly improved. Another dynamic programming technique called policy iteration explicitly represents and improves the policy instead.[5][6]

Approximate POMDP solutions

[edit]

In practice, POMDPs are often computationally intractable to solve exactly. This intractability is often due to the curse of dimensionality or the curse of history (the fact that optimal policies may depend on the entire history of actions and observations). To address these issues, computer scientists have developed various approximate POMDP solutions.[7] These solutions typically attempt to approximate the problem or solution with a limited number of parameters, plan only over a small part of the belief space online, or summarize the action-observation history compactly.

Grid-based algorithms[8] comprise one approximate solution technique. In this approach, the value function is computed for a set of points in the belief space, and interpolation is used to determine the optimal action to take for other belief states that are encountered which are not in the set of grid points. More recent work makes use of sampling techniques, generalization techniques and exploitation of problem structure, and has extended POMDP solving into large domains with millions of states.[9][10] For example, adaptive grids and point-based methods sample random reachable belief points to constrain the planning to relevant areas in the belief space.[11][12] Dimensionality reduction using PCA has also been explored.[13]

Online planning algorithms approach large POMDPs by constructing a new policy for the current belief each time a new observation is received. Such a policy only needs to consider future beliefs reachable from the current belief, which is often only a very small part of the full belief space. This family includes variants of Monte Carlo tree search[14] and heuristic search.[15] Similar to MDPs, it is possible to construct online algorithms that find arbitrarily near-optimal policies and have no direct computational complexity dependence on the size of the state and observation spaces.[16]

Another line of approximate solution techniques for solving POMDPs relies on using (a subset of) the history of previous observations, actions and rewards up to the current time step as a pseudo-state. Usual techniques for solving MDPs based on these pseudo-states can then be used (e.g. Q-learning). Ideally the pseudo-states should contain the most important information from the whole history (to reduce bias) while being as compressed as possible (to reduce overfitting).[17]

POMDP theory

[edit]

Planning in POMDP is undecidable in general. However, some settings have been identified to be decidable (see Table 2 in,[18] reproduced below). Different objectives have been considered. Büchi objectives are defined by Büchi automata. Reachability is an example of a Büchi condition (for instance, reaching a good state in which all robots are home). coBüchi objectives correspond to traces that do not satisfy a given Büchi condition (for instance, not reaching a bad state in which some robot died). Parity objectives are defined via parity games; they enable to define complex objectives such that reaching a good state every 10 timesteps. The objective can be satisfied:

  • almost-surely, that is the probability to satisfy the objective is 1;
  • positive, that is the probability to satisfy the objective is strictly greater than 0;
  • quantitative, that is the probability to satisfy the objective is greater than a given threshold.

We also consider the finite memory case in which the agent is a finite-state machine, and the general case in which the agent has an infinite memory.

Objectives Almost-sure (infinite memory) Almost-sure (finite memory) Positive (inf. mem.) Positive (finite mem.) Quantitative (inf. mem) Quantitative (finite mem.)
Büchi EXPTIME-complete EXPTIME-complete undecidable EXPTIME-complete[18] undecidable undecidable
coBüchi undecidable EXPTIME-complete[18] EXPTIME-complete EXPTIME-complete undecidable undecidable
parity undecidable EXPTIME-complete[18] undecidable EXPTIME-complete[18] undecidable undecidable

Applications

[edit]

POMDPs can be used to model many kinds of real-world problems. Notable applications include the use of a POMDP in management of patients with ischemic heart disease,[19] assistive technology for persons with dementia,[9][10] the conservation of the critically endangered and difficult to detect Sumatran tigers[20] and aircraft collision avoidance.[21]

One application is a teaching case, a crying baby problem, where a parent needs to sequentially decide whether to feed the baby based on the observation of whether the baby is crying or not, which is an imperfect representation of the actual baby's state of hunger.[22][23]

References

[edit]
  1. ^ ?str?m, K.J. (1965). "Optimal control of Markov processes with incomplete state information". Journal of Mathematical Analysis and Applications. 10: 174–205. doi:10.1016/0022-247X(65)90154-X.
  2. ^ a b Kaelbling, L.P., Littman, M.L., Cassandra, A.R. (1998). "Planning and acting in partially observable stochastic domains". Artificial Intelligence. 101 (1–2): 99–134. doi:10.1016/S0004-3702(98)00023-X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Sondik, E.J. (1971). The optimal control of partially observable Markov processes (PhD thesis). Stanford University. Archived from the original on October 17, 2019.
  4. ^ Smallwood, R.D., Sondik, E.J. (1973). "The optimal control of partially observable Markov decision processes over a finite horizon". Operations Research. 21 (5): 1071–88. doi:10.1287/opre.21.5.1071.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Sondik, E.J. (1978). "The optimal control of partially observable Markov processes over the infinite horizon: discounted cost". Operations Research. 26 (2): 282–304. doi:10.1287/opre.26.2.282.
  6. ^ Hansen, E. (1998). "Solving POMDPs by searching in policy space". Proceedings of the Fourteenth International Conference on Uncertainty In Artificial Intelligence (UAI-98). arXiv:1301.7380.
  7. ^ Hauskrecht, M. (2000). "Value function approximations for partially observable Markov decision processes". Journal of Artificial Intelligence Research. 13: 33–94. arXiv:1106.0234. doi:10.1613/jair.678.
  8. ^ Lovejoy, W. (1991). "Computationally feasible bounds for partially observed Markov decision processes". Operations Research. 39: 162–175. doi:10.1287/opre.39.1.162.
  9. ^ a b Jesse Hoey; Axel von Bertoldi; Pascal Poupart; Alex Mihailidis (2007). "Assisting Persons with Dementia during Handwashing Using a Partially Observable Markov Decision Process". Proceedings of the International Conference on Computer Vision Systems. doi:10.2390/biecoll-icvs2007-89.
  10. ^ a b Jesse Hoey; Pascal Poupart; Axel von Bertoldi; Tammy Craig; Craig Boutilier; Alex Mihailidis. (2010). "Automated Handwashing Assistance For Persons With Dementia Using Video and a Partially Observable Markov Decision Process". Computer Vision and Image Understanding. 114 (5): 503–519. CiteSeerX 10.1.1.160.8351. doi:10.1016/j.cviu.2009.06.008.
  11. ^ Pineau, J., Gordon, G., Thrun, S. (August 2003). "Point-based value iteration: An anytime algorithm for POMDPs" (PDF). International Joint Conference on Artificial Intelligence (IJCAI). Acapulco, Mexico. pp. 1025–32.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  12. ^ Hauskrecht, M. (1997). "Incremental methods for computing bounds in partially observable Markov decision processes". Proceedings of the 14th National Conference on Artificial Intelligence (AAAI). Providence, RI. pp. 734–739. CiteSeerX 10.1.1.85.8303.
  13. ^ Roy, Nicholas; Gordon, Geoffrey (2003). "Exponential Family PCA for Belief Compression in POMDPs" (PDF). Advances in Neural Information Processing Systems.
  14. ^ David Silver and Joel Veness (2010). Monte-Carlo planning in large POMDPs. Advances in neural information processing systems.
  15. ^ Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee (2017). "DESPOT: Online POMDP Planning with Regularization". Journal of Artificial Intelligence Research. 58: 231–266. arXiv:1609.03250. doi:10.1613/jair.5328.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Michael H. Lim, Tyler J. Becker, Mykel J. Kochenderfer, Claire J. Tomlin, and Zachary N. Sunberg (2023). "Optimality Guarantees for Particle Belief Approximation of POMDPs". Journal of Artificial Intelligence Research. 77: 1591–1636. arXiv:2210.05015. doi:10.1613/jair.1.14525.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ Francois-Lavet, V., Rabusseau, G., Pineau, J., Ernst, D., Fonteneau, R. (2019). On overfitting and asymptotic bias in batch reinforcement learning with partial observability. Journal of Artificial Intelligence Research. Vol. 65. pp. 1–30. arXiv:1709.07796.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  18. ^ a b c d e Chatterjee, Krishnendu; Chmelík, Martin; Tracol, Mathieu (2025-08-06). "What is decidable about partially observable Markov decision processes with ω-regular objectives". Journal of Computer and System Sciences. 82 (5): 878–911. doi:10.1016/j.jcss.2016.02.009. ISSN 0022-0000.
  19. ^ Hauskrecht, M., Fraser, H. (2000). "Planning treatment of ischemic heart disease with partially observable Markov decision processes". Artificial Intelligence in Medicine. 18 (3): 221–244. doi:10.1016/S0933-3657(99)00042-1. PMID 10675716.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Chadès, I., McDonald-Madden, E., McCarthy, M.A., Wintle, B., Linkie, M., Possingham, H.P. (16 September 2008). "When to stop managing or surveying cryptic threatened species". Proc. Natl. Acad. Sci. U.S.A. 105 (37): 13936–40. Bibcode:2008PNAS..10513936C. doi:10.1073/pnas.0805265105. PMC 2544557. PMID 18779594.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Kochenderfer, Mykel J. (2015). "Optimized Airborne Collision Avoidance". Decision Making Under Uncertainty. The MIT Press.
  22. ^ Kochenderfer, Mykel J.; Wheeler, Tim A.; Wray, Kyle H. (2022). Algorithms for decision making. Cambridge, Massachusetts; London, England: MIT Press. p. 678. ISBN 9780262047012.
  23. ^ Moss, Robert J. (Sep 24, 2021). "WATCH: POMDPs: Decision Making Under Uncertainty POMDPs.jl. Crying baby problem" (video). youtube.com. The Julia Programming Language.
[edit]
喜新厌旧是什么生肖 肺气不足有什么症状 做梦梦见搬家是什么意思 甲亢是什么原因引起的 三七粉主治什么
拍证件照穿什么衣服 以什么之名 佛陀是什么意思 经常头疼是什么原因 脸肿挂什么科
机械性窒息死亡是什么意思 感冒吃什么水果好得快 尖锐湿疣吃什么药 金匮肾气丸适合什么人吃 空调一匹是什么意思
为什么会低钾 眼睛干涩是什么原因引起的 大便为什么是黑色的是什么原因 8.3是什么星座 3ph是什么意思
现在什么餐饮最火hcv7jop5ns5r.cn 二垒是什么意思hcv9jop3ns8r.cn 脉率是什么hcv8jop4ns1r.cn 脾切除后有什么影响和后遗症fenrenren.com 小姨的女儿叫什么hcv7jop6ns5r.cn
甘油三酯高是什么意思hcv8jop5ns9r.cn 木瓜什么味道hcv9jop6ns3r.cn 眼袋重是什么原因hcv7jop7ns4r.cn 音序是什么意思hcv9jop5ns1r.cn 友五行属什么hcv7jop9ns8r.cn
杀青了是什么意思hcv9jop4ns4r.cn 3月30号是什么星座hcv8jop4ns0r.cn 去痣挂号挂什么科hcv9jop5ns5r.cn 傍晚是什么时候hcv8jop6ns8r.cn 标题是什么意思hcv8jop0ns7r.cn
阴唇长什么样hcv8jop6ns9r.cn 吃粥配什么菜hcv9jop4ns9r.cn 拉分是什么意思bjcbxg.com pr是什么意思hcv9jop3ns9r.cn 乳蛾是什么意思hcv9jop5ns3r.cn
百度