女人安全期是什么时候| 左肾轻度积水是什么意思| 绝经有什么症状| 结婚送什么| 狐臭应该挂什么科| 为什么早上起来血压高| 舌头干涩是什么病前兆| 什么是玄学| 半夜吃东西有什么危害| 突破性出血是什么意思| hpv有什么症状| 榴莲是什么季节的水果| 突然头晕冒虚汗什么原因| 6月13是什么星座| 牙齿松动吃什么药| 珍珠母贝是什么东西| 露酒是什么| 小孩爱吃手指头是什么原因| 交链孢霉过敏是什么| 带状疱疹吃什么药好| 长期喝山楂水有什么好处和坏处| police是什么意思| 九重天是什么意思| 严重失眠吃什么药管用| 胎儿头位是什么意思| 小腹胀痛是什么原因| 为什么叫梅雨季节| 谢霆锋什么学历| 尿酸高去医院挂什么科| 女人吃鹿茸有什么好处| 肛门指检是检查什么| 胎心快是什么原因| 手指上长毛是什么原因| 梦见明星是什么预兆| 眼白发红是什么原因| 怀孕血压高对胎儿有什么影响| 肾功能不好有什么症状| 女生排卵期在什么时候| trust阴性tppa阳性说明什么| 怀孕为什么会肚子痛| 什么是邪教| 浆细胞肿瘤是什么病| 缺铁性贫血吃什么药好| 查血糖是什么检查项目| 湿吻是什么意思| 索条影是什么意思| 葛根有什么作用| 银耳和雪耳有什么区别| 为什么会有乳腺结节| 女性什么时候绝经| 开五行属性是什么| 梦到被蛇咬是什么意思周公解梦| 七月六号是什么星座| 什么是优质蛋白食物| 虬结什么意思| 白带是什么样子| 什么是ts| 全身淋巴结肿大是什么原因| 血糖挂什么科| 侃侃而谈是什么意思| 山楂不能和什么一起吃| kor是什么意思| 做面条用什么面粉| 杨梅什么时候成熟| 火龙果什么季节成熟| 早上九点半是什么时辰| 黄油是用什么做的| 藕是莲的什么部位| 阿莫西林治什么| 人突然晕倒是什么原因引起的| 激素六项是查什么的| 小乌龟吃什么食物| 透明质酸是什么| 什么是白虎| 相表里什么意思| 牙齿疼吃什么药| 什么物流寄大件便宜| 脑震荡后眩晕吃什么药| 吐黑水是什么原因| 仙草是什么| 腱鞘炎用什么药治疗| 结扎对女人有什么伤害| 肾囊肿用什么药| 总胆固醇偏高是什么意思| 汗水多是什么原因| rian是什么意思| 尿常规能查出什么| 为什么会长白头发| 艺高人胆大什么意思| 司马懿字什么| 牙齿为什么会痛| 孕酮低什么原因造成的| 解大便时有鲜血流出是什么原因| 什么是荷尔蒙| 婴儿泡奶粉用什么水好| 长脓包是什么原因| 前列腺在人体什么位置| aldo是什么牌子| 肝转氨酶高有什么危害| 木棉是什么| 结扎对男人有什么伤害| 戴银首饰对身体有什么好处| 甲亢平时要注意什么| 农历3月3是什么节日| 三里屯有什么好玩的地方| 胎儿靠什么吸收营养| 为什么会出现眼袋| 一月来两次月经是什么原因| vogue什么意思| 什么是偏光眼镜| 2024是什么年生肖| 晚上睡觉手发麻是什么原因| 手足口病什么症状| 淋菌性尿道炎吃什么药| 梦见虱子是什么意思| 生蚝吃了有什么好处| 吃什么去黄气美白| 夏至节气吃什么| 血糖高吃什么能降糖| 生长激素是什么| 连坐是什么意思| 一什么月亮| 得了破伤风是什么症状| 11月22是什么星座| 荷兰机场叫什么| 农村养殖什么好| 低压高会引起什么后果| 吃什么对甲状腺有好处| 中核集团是什么级别| 什么学习机好| 结节灶是什么意思啊| 右乳导管扩张什么意思| 黑棕色是什么颜色| egg是什么意思| 乌鸡煲汤放什么材料| 梦见打别人是什么意思| 老是口腔溃疡是什么原因| 7月29号是什么日子| 蜂蜜和什么不能一起吃| 5月31日什么星座| 正常的心电图是什么样的图形| 孩子皮肤黑是什么原因| 湿疹为什么一热就出来| 退行性改变是什么意思| 咳嗽有痰吃什么药好得最快最有效| 茯砖茶是什么茶| 上火吃什么| 卡其色裙子配什么颜色上衣好看| 4月29号0点是什么时候| 喉咙发炎咳嗽吃什么药好得快| 什么是ct| 汉族是什么人种| 什么食物含牛磺酸| 梦见好多西瓜是什么意思| 净字五行属什么| 乳腺增生乳腺结节吃什么药| 点了痣要注意什么| 阴道干涩用什么药| 女性分泌物少是什么原因| 什么是天体| 骨膜炎是什么症状| 什么贵人能治孤辰寡宿| 什么生肖名扬四海| 羊排和什么一起炖好吃| 胸膜炎什么症状| 空调睡眠是什么意思| 产检建档需要什么资料| 感冒头痛吃什么药| 破日是什么意思| cot等于什么| 不拉屎是什么原因| 梦见自己生病住院了是什么意思| 江诗丹顿是什么档次| 艾特是什么意思| 头痛吃什么药效果好| 且慢是什么意思| 皮肤黑的人穿什么颜色的衣服显白| 什么什么各异| 四两棉花歇后语是什么| 血粘稠吃什么药最好| 欢子真名叫什么| 内分泌失调看什么科| 养肝要吃什么| 叫嚣是什么意思| 绿茶什么时候喝最好| 什么是姑息治疗| est.是什么意思| 6月13号是什么星座| 什么汤什么火| 6月30是什么星座| 为什么海螺里有大海的声音| 正的五行属性是什么| 褪黑素是什么东西| 儒字五行属什么| 纺织厂是做什么的| 瓷娃娃什么意思| 什么眼型最好看| 古人的婚礼在什么时候举行| 华佗是什么生肖| r0lex是什么牌子手表| 大头菜又叫什么菜| 蚯蚓吃什么| 什么人不怕冷| 腿抽筋什么原因| 收尾是什么意思| 风湿性关节炎什么症状| 甲减有什么症状表现| 大门是什么生肖| 喜怒无常是什么意思| 什么叫射频消融| 黄芪加陈皮有什么功效| 女人梦见老鼠什么征兆| 22岁属什么| 什么什么的草地| 2011年是什么生肖| 甲状腺结节对身体有什么影响| 后期是什么意思| 指甲月牙代表什么| 疑难杂症是什么意思| 凝血功能差有什么危害| 2010年是什么生肖| 旺夫脸是什么脸型| 宝齐莱手表什么档次| 考药师证需要什么条件| 镁低了是什么原因| 右手手背有痣代表什么| 农历五月的别称是什么| 甲木代表什么| 三文鱼为什么可以生吃| 尿胆红素2十是什么意思| 腰肌劳损是什么原因造成的| gn是什么意思| 胃结石有什么症状表现| 尿素氮肌酐比值偏高是什么原因| 雪芽是什么| 智是什么意思| 亚临床甲减是什么意思| 尿毒症小便什么颜色| 蚕屎做枕头有什么好处| 爸爸是什么意思| 孕反应最早什么时候开始| 拉屎不成形是什么原因| nilm是什么意思| 钮祜禄氏现在姓什么| 残留是什么意思| 什么叫轻食| 两性关系是什么意思| 低gi食物是什么意思| dtc什么意思| 避火图是什么| swissmade是什么意思| 双鱼座和什么座最配对| 酸奶不能和什么一起吃| 挂帅是什么意思| 诊疗是什么意思| 复杂囊肿是什么意思| 前列腺增生有什么症状| 脂肪瘤吃什么药可以消除| 很man是什么意思| 什么是粗粮食物有哪些| 中秋节的习俗是什么| 牛头马面是什么生肖| 降血脂吃什么药效果好| 水肺潜水是什么意思| 百度Jump to content

用车盘点十大保值汽车品牌排行 德系日系各占

From Wikipedia, the free encyclopedia
百度 保险保障功能逐年提升,赔款金额稳步增长。

In mathematical logic and theoretical computer science, an abstract rewriting system (also (abstract) reduction system or abstract rewrite system; abbreviated ARS) is a formalism that captures the quintessential notion and properties of rewriting systems. In its simplest form, an ARS is simply a set (of "objects") together with a binary relation, traditionally denoted with ; this definition can be further refined if we index (label) subsets of the binary relation. Despite its simplicity, an ARS is sufficient to describe important properties of rewriting systems like normal forms, termination, and various notions of confluence.

Historically, there have been several formalizations of rewriting in an abstract setting, each with its idiosyncrasies. This is due in part to the fact that some notions are equivalent, see below in this article. The formalization that is most commonly encountered in monographs and textbooks, and which is generally followed here, is due to Gérard Huet (1980).[1]

Definition

[edit]

An abstract reduction system (ARS) is the most general (unidimensional) notion about specifying a set of objects and rules that can be applied to transform them. More recently, authors use the term abstract rewriting system as well.[2] (The preference for the word "reduction" here instead of "rewriting" constitutes a departure from the uniform use of "rewriting" in the names of systems that are particularizations of ARS. Because the word "reduction" does not appear in the names of more specialized systems, in older texts reduction system is a synonym for ARS.)[3]

An ARS is a set A, whose elements are usually called objects, together with a binary relation on A, traditionally denoted by →, and called the reduction relation, rewrite relation[2] or just reduction.[3] This (entrenched) terminology using "reduction" is a little misleading, because the relation is not necessarily reducing some measure of the objects.

In some contexts it may be beneficial to distinguish between some subsets of the rules, i.e. some subsets of the reduction relation →, e.g. the entire reduction relation may consist of associativity and commutativity rules. Consequently, some authors define the reduction relation → as the indexed union of some relations; for instance if , the notation used is (A, →1, →2).

As a mathematical object, an ARS is exactly the same as an unlabeled state transition system, and if the relation is considered as an indexed union, then an ARS is the same as a labeled state transition system with the indices being the labels. The focus of the study, and the terminology are different however. In a state transition system one is interested in interpreting the labels as actions, whereas in an ARS the focus is on how objects may be transformed (rewritten) into others.[4]

Example 1

[edit]

Suppose the set of objects is T = {a, b, c} and the binary relation is given by the rules ab, ba, ac, and bc. Observe that these rules can be applied to both a and b to get c. Furthermore, nothing can be applied to c to transform it any further. Such a property is clearly an important one.

Basic notions

[edit]

First define some basic notions and notations.[5]

  • is the transitive closure of .
  • is the reflexive transitive closure of , i.e. the transitive closure of , where = is the identity relation. Equivalently, is the smallest preorder containing .
  • Similarly, , and are closures of , the converse relation of .
  • is the symmetric closure of , that is, the union of with .
  • is the reflexive transitive symmetric closure of , i.e. the transitive closure of . Equivalently, is the smallest equivalence relation containing .

Normal forms

[edit]

An object x in A is called reducible if there exist some other y in A and ; otherwise it is called irreducible or a normal form. An object y is called a normal form of x if and y is irreducible. If x has a unique normal form, then this is usually denoted with . In example 1 above, c is a normal form, and . If every object has at least one normal form, the ARS is called normalizing.

Joinability

[edit]

A related, but weaker notion than the existence of normal forms is that of two objects being joinable: x and y are said to be joinable if there exists some z with the property that . From this definition, it's apparent one may define the joinability relation as , where is the composition of relations. Joinability is usually denoted, somewhat confusingly, also with , but in this notation the down arrow is a binary relation, i.e. we write if x and y are joinable.

The Church–Rosser property and notions of confluence

[edit]

An ARS is said to possess the Church–Rosser property if and only if implies for all objects x, y. Equivalently, the Church–Rosser property means that the reflexive transitive symmetric closure is contained in the joinability relation. Alonzo Church and J. Barkley Rosser proved in 1936 that lambda calculus has this property;[6] hence the name of the property.[7] In an ARS with the Church–Rosser property the word problem may be reduced to the search for a common successor. In a Church–Rosser system, an object has at most one normal form; that is, the normal form of an object is unique if it exists, but it may well not exist.

Various properties, simpler than Church–Rosser, are equivalent to it. The existence of these equivalent properties allows one to prove that a system is Church–Rosser with less work. Furthermore, the notions of confluence can be defined as properties of a particular object, something that's not possible for Church–Rosser. An ARS is said to be,

  • confluent if and only if for all w, x, and y in A, implies . Roughly speaking, confluence says that no matter how two paths diverge from a common ancestor (w), the paths are joining at some common successor. This notion may be refined as property of a particular object w, and the system called confluent if all its elements are confluent.
  • semi-confluent if and only if for all w, x, and y in A, implies . This differs from confluence by the single step reduction from w to x.
  • locally confluent if and only if for all w, x, and y in A, implies . This property is sometimes called weak confluence.
Example of a locally confluent rewrite system not having the Church–Rosser property

Theorem. For an ARS the following three conditions are equivalent: (i) it has the Church–Rosser property, (ii) it is confluent, (iii) it is semi-confluent.[8]

Corollary.[9] In a confluent ARS if then

  • If both x and y are normal forms, then x = y.
  • If y is a normal form, then .

Because of these equivalences, a fair bit of variation in definitions is encountered in the literature. For instance, in Terese the Church–Rosser property and confluence are defined to be synonymous and identical to the definition of confluence presented here; Church–Rosser as defined here remains unnamed, but is given as an equivalent property; this departure from other texts is deliberate.[10] Because of the above corollary, one may define a normal form y of x as an irreducible y with the property that . This definition, found in Book and Otto, is equivalent to the common one given here in a confluent system, but it is more inclusive in a non-confluent ARS.

Local confluence on the other hand is not equivalent with the other notions of confluence given in this section, but it is strictly weaker than confluence. The typical counterexample is , which is locally confluent but not confluent (cf. picture).

Termination and convergence

[edit]

An abstract rewriting system is said to be terminating or noetherian if there is no infinite chain . (This is just saying that the rewriting relation is a Noetherian relation.) In a terminating ARS, every object has at least one normal form, thus it is normalizing. The converse is not true. In example 1 for instance, there is an infinite rewriting chain, namely , even though the system is normalizing. A confluent and terminating ARS is called canonical,[11] or convergent. In a convergent ARS, every object has a unique normal form. But it is sufficient for the system to be confluent and normalizing for a unique normal to exist for every element, as seen in example 1.

Theorem (Newman's lemma): A terminating ARS is confluent if and only if it is locally confluent.

The original 1942 proof of this result by Newman was rather complicated. It wasn't until 1980 that Huet published a much simpler proof exploiting the fact that when is terminating we can apply well-founded induction.[12]

See also

[edit]

Notes

[edit]
  1. ^ Book & Otto 1993, p. 9
  2. ^ a b Terese 2003, p. 7
  3. ^ a b Book & Otto 1993, p. 10
  4. ^ Terese 2003, pp. 7–8
  5. ^ Baader & Nipkow 1998, pp. 8–9
  6. ^ Church & Rosser 1936
  7. ^ Baader & Nipkow 1998, p. 9
  8. ^ Baader & Nipkow 1998, p. 11
  9. ^ Baader & Nipkow 1998, p. 12
  10. ^ Terese 2003, p. 11
  11. ^ Duffy 1991, p. 153, sect.7.2.1
  12. ^ Harrison 2009, p. 260

References

[edit]
  • Baader, Franz; Nipkow, Tobias (1998). Term Rewriting and All That. Cambridge University Press. ISBN 9780521779203. A textbook suitable for undergraduates.
  • Nachum Dershowitz and Jean-Pierre Jouannaud Rewrite Systems, Chapter 6 in Jan van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier and MIT Press, 1990, ISBN 0-444-88074-7, pp. 243–320. The preprint of this chapter is freely available from the authors, but it misses the figures.
  • Book, Ronald V.; Otto, Friedrich (1993). "1, "Abstract reduction systems"". String-rewriting Systems. Springer. ISBN 0-387-97965-4.
  • Marc Bezem; Jan Willem Klop; Roel de Vrijer; Terese (2003). "1". Term rewriting systems. Cambridge University Press. ISBN 0-521-39115-6. This is a comprehensive monograph. It uses, however, a fair deal of notations and definitions not commonly encountered elsewhere. For instance the Church–Rosser property is defined to be identical with confluence.
  • Harrison, John (2009). "4 "Equality"". Handbook of Practical Logic and Automated Reasoning Cambridge University Press. ISBN 978-0-521-89957-4. Abstract rewriting from the practical perspective of solving problems in equational logic.
  • Gérard Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, Journal of the ACM (JACM), October 1980, Volume 27, Issue 4, pp. 797–821. Huet's paper established many of the modern concepts, results and notations.
  • Sinyor, J.; "The 3x+1 Problem as a String Rewriting System", International Journal of Mathematics and Mathematical Sciences, Volume 2010 (2010), Article ID 458563, 6 pages.
  • Duffy, David A. (1991). Principles of Automated Theorem Proving. Wiley.
  • Church, Alonzo; Rosser, J. B. (1936). "Some Properties of Conversion". Transactions of the American Mathematical Society. 39 (3): 472–482. doi:10.2307/1989762. ISSN 0002-9947. JSTOR 1989762.
慢性鼻炎用什么药 618是什么星座 肝的作用和功能是什么 八0年属什么生肖 女性肾火旺有什么症状
用进废退是什么意思 猪吃什么 human什么意思 专项变应原筛查是什么 1月18日什么星座
外耳道湿疹用什么药 骨质疏松用什么药好 记忆力差吃什么药 白鹭吃什么 大象吃什么
考法医需要什么条件 干咳喝什么止咳糖浆好 喉咙干咳吃什么药 若什么若什么的成语 日本桑是什么意思
梦到别人给钱是什么意思hcv8jop6ns8r.cn 处事不惊是什么意思hcv8jop9ns1r.cn 按摩头皮有什么好处hcv9jop4ns9r.cn 敢是什么意思hcv9jop7ns3r.cn 锦囊妙计是什么意思hcv8jop7ns9r.cn
室上速是什么原因导致的hcv7jop6ns7r.cn 社会保险费是什么jingluanji.com fe是什么意思hcv9jop1ns5r.cn 四菜一汤是什么意思hcv9jop2ns0r.cn 功课是什么意思beikeqingting.com
冬是什么结构hcv9jop0ns8r.cn eb病毒阳性是什么意思hcv7jop9ns4r.cn 做梦梦到对象出轨是什么意思hcv8jop0ns9r.cn 身体潮湿是什么原因hcv9jop3ns2r.cn 切脉切的是什么脉hcv9jop5ns0r.cn
8月初是什么星座hcv9jop8ns1r.cn 火眼是什么症状hcv8jop3ns6r.cn 撸管什么意思hcv9jop1ns9r.cn 赶集什么意思hcv9jop0ns3r.cn 接见是什么意思hcv9jop0ns9r.cn
百度