肾阳虚是什么意思| 小便很臭是什么原因| 小孩睡觉磨牙齿是什么原因| 孕妇早上吃什么早餐好| 子是什么属性| 嫖娼是什么意思| 儿童肥胖挂什么科| 什么地移入| 州和洲有什么区别| 好奇害死猫是什么意思| 胃挂什么科| 吃维生素b2有什么好处和副作用| beside是什么意思| 肚子痛什么原因| dic医学上是什么意思| 什么是癔症病| 7.14日是什么日子| robot什么意思| 草缸适合养什么鱼| 嗓子有异物感堵得慌吃什么药| 营养师属于什么专业| 扁平息肉属于什么性质| 棒棒糖是什么意思| 十面埋伏是什么生肖| 大白刁是什么鱼| 主动脉硬化什么意思| 杂合变异是什么意思| 霉菌性阴炎用什么药好得快| 黄晓明和杨颖什么时候结婚的| 砍是什么生肖| 一代明君功千秋是什么生肖| 腕管综合征吃什么药| 安装空调需要注意什么| 偷窥什么意思| 艾滋病英文缩写是什么| 乳腺4a是什么意思| 瞒天过海是什么意思| 番茄红素有什么作用| 什么是软文| 尿蛋白是什么| 生脉饮适合什么人群| 水泥烧伤皮肤用什么药| 天生丽质什么意思| 经常生气会得什么病| 吃得什么填词语| 出的汗是凉的什么原因| 武装部部长是什么级别| 三分钟热度是什么意思| 滑板什么意思| 爸爸的哥哥叫什么| 频繁放屁是什么原因| 口渴喝什么最解渴| 坐月子能吃什么菜| 梦到自己生孩子了是什么预兆| 今天什么年| 什么植物有毒| 咋啦是什么意思| 喝牛奶有什么好处| 火命适合什么颜色| 长期便秘是什么原因| 法字五行属什么| 宫内早孕什么意思| 吃什么可以降血压| 欲望什么意思| 心室早复极是什么意思| 三叉神经吃什么药好| 脚气缺什么维生素| 恭送是什么意思| 什么的石头| 牙龈出血缺什么维生素| 颈椎病睡什么枕头最好| 印记是什么意思| 精神小伙什么意思| 苏打是什么| 舌苔厚白腻是什么原因引起的| 叶酸片有什么功效| kenzo是什么牌子| 外援是什么意思| 宝宝说话晚是什么原因造成的| aupres是什么牌子化妆品| 鸦片鱼又叫什么鱼| 数字7五行属什么| 蚂蚁最怕什么东西| 视黄醇结合蛋白是什么| 海带和什么菜搭配好吃| 小孩子黑眼圈重是什么原因| 长期服用丙戊酸钠有什么副作用| 你喜欢我什么| 肠胃不好吃什么水果比较好| 东北有什么特产| 蛞蝓是什么| 彪是什么动物| 9月8号是什么星座| 煲什么汤去湿气最好| 干咳嗓子痒吃什么药| tnt是什么意思| 什么的生长| 麦芽糖醇是什么| 国代是什么意思| 带子是什么海鲜| 路上行人匆匆过是什么歌| 干贝是什么东西做的| 梳子什么材质的好| 咽炎吃什么药效果最好| 1111是什么意思| 木槿花什么时候开花| 什么是理数| 双肺纹理增多是什么意思严重吗| 鸳鸯浴是什么意思| 毛片是什么| 水可以加什么偏旁| 7月23日是什么日子| 梦到女朋友出轨是什么意思| 男人睡觉流口水是什么原因| nac是什么意思| 杜甫号什么| 梦见抓鱼是什么预兆| 徐长卿是什么药| hpv阳性有什么症状| 洋姜有什么功效与作用| 低密度脂蛋白低是什么原因| 热感冒吃什么药好| 养狗养不活是什么兆头| 且行且珍惜是什么意思| 烧心是什么症状| 白羊女跟什么星座最配| 贵阳有什么特产| 居士是什么意思| 全身痒是什么病的前兆| 反酸吃什么药| 内膜增生是什么意思| 什么是脑瘫| 微信什么时候开始的| 鼻子和嘴巴连接的地方叫什么| 处女膜是什么颜色| 喉咙痒痒的吃什么药| 睡觉多梦是什么原因引起的| wendy什么意思| 眼睛浮肿是什么原因| 亚硝酸盐阴性是什么意思| 昕字取名什么寓意| 二甲双胍是什么药| 玉簟秋是什么意思| 女生被口是什么感觉| fs是什么意思| 仰望是什么意思| 儿童说话不清楚挂什么科| 2030是什么年| 共情是什么意思| 喜欢绿色的女人是什么性格| 梅花什么季节开| 血压低压高是什么原因造成的| 震撼的意思是什么| 四面八方指什么生肖| 孕检nt主要检查什么| 孤独的最高境界是什么| 月经期间洗澡会有什么影响吗| 低俗是什么意思| 太上老君的坐骑是什么| 肛门上长了个肉疙瘩是什么原因| 左小腿麻木是什么原因| 梦见蛇预示着什么| 卖什么意思| 着相什么意思| 国家的实质是什么| 开店需要什么手续| scc什么意思| 天津有什么特产| 梦见打苍蝇是什么意思| 为什么夏天| 女红是什么意思| 场记是做什么的| 肚子里有虫子会有什么症状| 6月份出生是什么星座| hazzys是什么牌子| 脑供血不足吃什么药最好| 孕妇梦见大蟒蛇是什么意思| 伤口吃什么消炎药| 吃什么治疗便秘| 太后是皇上的什么人| 表面积是什么意思| 虾青素有什么作用| 隔空打牛是什么意思| 眼镜发明之前眼镜蛇叫什么| 乙醇对人体有什么伤害| 难耐是什么意思| 什么的威尼斯| ct是什么| 路政属于什么单位| 二月十七是什么星座| 肾功能挂什么科| 喜欢白色的人是什么性格| 吃什么败火| 氨咖黄敏胶囊主治什么| 十二指肠球炎吃什么药| 草莓什么季节| 什么是上火| 晚上饿了吃什么不长胖| 肩周炎吃什么药好| 颈椎ct能检查出什么| 脸容易红是什么原因| 领养孩子需要什么条件| 前列腺增生吃什么药最好| 大小脸是什么原因造成的| 批发零售属于什么行业| 肺心病是什么原因引起的| 盗汗是什么症状| 小狗拉稀 吃什么药| 大姨妈来吃什么水果好| 犯口舌是什么意思| 咽喉炎吃什么药好| 为什么会落枕| 腥辣食物指的是什么| 洗牙喷砂是什么意思| 总胆固醇高有什么症状| 吃什么降低胆固醇| 开金花是什么生肖| 逸搏心律什么意思| 儿童喝蜂蜜水有什么好处和坏处| 瓜皮是什么意思| 乳腺增生是什么原因引起的| 报价是什么意思| 老人头晕吃什么药效果好| 三千烦恼丝什么意思| 什么是羊水栓塞| 怀孕乳房会有什么变化| 雅五行属性是什么| 火车动车高铁有什么区别| 什么颜色的包包招财并聚财| imei是什么意思| 什么样的小河| 甲功是什么| 做奶茶用什么茶叶| 儒雅什么意思| 8月1日是什么日子| 蕾丝边是指什么意思| 卫生局是什么单位| 吃什么补充黄体酮| 靠谱什么意思| 尿隐血是什么问题| 右肺结节是什么意思| 迎春花什么时候开花| 775是什么意思| 孕早期吃什么有利于胎心胎芽发育| 男性全身皮肤瘙痒是什么原因| 经常饿是什么原因| 舌头发白有齿痕是什么原因| 什么叫走读生| 转氨酶高是什么问题| 品行是什么意思| 杨琴是什么乐器| 菊花和枸杞泡水喝有什么功效| 突然耳朵疼是什么原因| 肝炎有什么症状| 四级军士长是什么级别| 五月二十九是什么星座| 意向什么意思| 从父是什么意思| 蟑螂吃什么| 护士是什么专业| 血压偏低有什么症状| 什么病不能吃核桃| 检查头部挂什么科| 上颚疼痛吃什么药| 百度Jump to content

未雨绸缪!facebook为防干扰法大选查删3万假帐户

From Wikipedia, the free encyclopedia
百度 根据国外经验,机场的投资效益比是1:8。

Automated planning and scheduling, sometimes denoted as simply AI planning,[1] is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

In known environments with available models, planning can be done offline. Solutions can be found and evaluated prior to execution. In dynamically unknown environments, the strategy often needs to be revised online. Models and policies must be adapted. Solutions usually resort to iterative trial and error processes commonly seen in artificial intelligence. These include dynamic programming, reinforcement learning and combinatorial optimization. Languages used to describe planning and scheduling are often called action languages.

Overview

[edit]

Given a description of the possible initial states of the world, a description of the desired goals, and a description of a set of possible actions, the planning problem is to synthesize a plan that is guaranteed (when applied to any of the initial states) to generate a state which contains the desired goals (such a state is called a goal state).

The difficulty of planning is dependent on the simplifying assumptions employed. Several classes of planning problems can be identified depending on the properties the problems have in several dimensions.

  • Are the actions deterministic or non-deterministic? For nondeterministic actions, are the associated probabilities available?
  • Are the state variables discrete or continuous? If they are discrete, do they have only a finite number of possible values?
  • Can the current state be observed unambiguously? There can be full observability and partial observability.
  • How many initial states are there, finite or arbitrarily many?
  • Do actions have a duration?
  • Can several actions be taken concurrently, or is only one action possible at a time?
  • Is the objective of a plan to reach a designated goal state, or to maximize a reward function?
  • Is there only one agent or are there several agents? Are the agents cooperative or selfish? Do all of the agents construct their own plans separately, or are the plans constructed centrally for all agents?

The simplest possible planning problem, known as the Classical Planning Problem, is determined by:

  • a unique known initial state,
  • durationless actions,
  • deterministic actions,
  • which can be taken only one at a time,
  • and a single agent.

Since the initial state is known unambiguously, and all actions are deterministic, the state of the world after any sequence of actions can be accurately predicted, and the question of observability is irrelevant for classical planning.

Further, plans can be defined as sequences of actions, because it is always known in advance which actions will be needed.

With nondeterministic actions or other events outside the control of the agent, the possible executions form a tree, and plans have to determine the appropriate actions for every node of the tree.

Discrete-time Markov decision processes (MDP) are planning problems with:

  • durationless actions,
  • nondeterministic actions with probabilities,
  • full observability,
  • maximization of a reward function,
  • and a single agent.

When full observability is replaced by partial observability, planning corresponds to a partially observable Markov decision process (POMDP).

If there are more than one agent, we have multi-agent planning, which is closely related to game theory.

Domain independent planning

[edit]

In AI planning, planners typically input a domain model (a description of a set of possible actions which model the domain) as well as the specific problem to be solved specified by the initial state and goal, in contrast to those in which there is no input domain specified. Such planners are called "domain independent" to emphasize the fact that they can solve planning problems from a wide range of domains. Typical examples of domains are block-stacking, logistics, workflow management, and robot task planning. Hence a single domain-independent planner can be used to solve planning problems in all these various domains. On the other hand, a route planner is typical of a domain-specific planner.

Planning domain modelling languages

[edit]

The most commonly used languages for representing planning domains and specific planning problems, such as STRIPS and PDDL for Classical Planning, are based on state variables. Each possible state of the world is an assignment of values to the state variables, and actions determine how the values of the state variables change when that action is taken. Since a set of state variables induce a state space that has a size that is exponential in the set, planning, similarly to many other computational problems, suffers from the curse of dimensionality and the combinatorial explosion.

An alternative language for describing planning problems is that of hierarchical task networks, in which a set of tasks is given, and each task can be either realized by a primitive action or decomposed into a set of other tasks. This does not necessarily involve state variables, although in more realistic applications state variables simplify the description of task networks.

Algorithms for planning

[edit]

Classical planning

[edit]

Action model learning

[edit]

Creating domain models is difficult, takes a lot of time, and can easily lead to mistakes. To help with this, several methods have been developed to automatically learn full or partial domain models from given observations. [2] [3] [4]

Reduction to other problems

[edit]

Temporal planning

[edit]

Temporal planning can be solved with methods similar to classical planning. The main difference is, because of the possibility of several, temporally overlapping actions with a duration being taken concurrently, that the definition of a state has to include information about the current absolute time and how far the execution of each active action has proceeded. Further, in planning with rational or real time, the state space may be infinite, unlike in classical planning or planning with integer time. Temporal planning is closely related to scheduling problems when uncertainty is involved and can also be understood in terms of timed automata. The Simple Temporal Network with Uncertainty (STNU) is a scheduling problem which involves controllable actions, uncertain events and temporal constraints. Dynamic Controllability for such problems is a type of scheduling which requires a temporal planning strategy to activate controllable actions reactively as uncertain events are observed so that all constraints are guaranteed to be satisfied. [5]

Probabilistic planning

[edit]

Probabilistic planning can be solved with iterative methods such as value iteration and policy iteration, when the state space is sufficiently small. With partial observability, probabilistic planning is similarly solved with iterative methods, but using a representation of the value functions defined for the space of beliefs instead of states.

Preference-based planning

[edit]

In preference-based planning, the objective is not only to produce a plan but also to satisfy user-specified preferences. A difference to the more common reward-based planning, for example corresponding to MDPs, preferences don't necessarily have a precise numerical value.

Conditional planning

[edit]

Deterministic planning was introduced with the STRIPS planning system, which is a hierarchical planner. Action names are ordered in a sequence and this is a plan for the robot. Hierarchical planning can be compared with an automatic generated behavior tree.[6] The disadvantage is, that a normal behavior tree is not so expressive like a computer program. That means, the notation of a behavior graph contains action commands, but no loops or if-then-statements. Conditional planning overcomes the bottleneck and introduces an elaborated notation which is similar to a control flow, known from other programming languages like Pascal. It is very similar to program synthesis, which means a planner generates sourcecode which can be executed by an interpreter.[7]

An early example of a conditional planner is “Warplan-C” which was introduced in the mid 1970s.[8] What is the difference between a normal sequence and a complicated plan, which contains if-then-statements? It has to do with uncertainty at runtime of a plan. The idea is that a plan can react to sensor signals which are unknown for the planner. The planner generates two choices in advance. For example, if an object was detected, then action A is executed, if an object is missing, then action B is executed.[9] A major advantage of conditional planning is the ability to handle partial plans.[10] An agent is not forced to plan everything from start to finish but can divide the problem into chunks. This helps to reduce the state space and solves much more complex problems.

Contingency planning

[edit]

We speak of "contingent planning" when the environment is observable through sensors, which can be faulty. It is thus a situation where the planning agent acts under incomplete information. For a contingent planning problem, a plan is no longer a sequence of actions but a decision tree because each step of the plan is represented by a set of states rather than a single perfectly observable state, as in the case of classical planning.[11] The selected actions depend on the state of the system. For example, if it rains, the agent chooses to take the umbrella, and if it doesn't, they may choose not to take it.

Michael L. Littman showed in 1998 that with branching actions, the planning problem becomes EXPTIME-complete.[12][13] A particular case of contiguous planning is represented by FOND problems - for "fully-observable and non-deterministic". If the goal is specified in LTLf (linear time logic on finite trace) then the problem is always EXPTIME-complete[14] and 2EXPTIME-complete if the goal is specified with LDLf.

Conformant planning

[edit]

Conformant planning is when the agent is uncertain about the state of the system, and it cannot make any observations. The agent then has beliefs about the real world, but cannot verify them with sensing actions, for instance. These problems are solved by techniques similar to those of classical planning,[15][16] but where the state space is exponential in the size of the problem, because of the uncertainty about the current state. A solution for a conformant planning problem is a sequence of actions. Haslum and Jonsson have demonstrated that the problem of conformant planning is EXPSPACE-complete,[17] and 2EXPTIME-complete when the initial situation is uncertain, and there is non-determinism in the actions outcomes.[13]

Deployment of planning systems

[edit]

See also

[edit]
Lists

References

[edit]
  1. ^ Ghallab, Malik; Nau, Dana S.; Traverso, Paolo (2004), Automated Planning: Theory and Practice, Morgan Kaufmann, ISBN 1-55860-856-7, archived from the original on 2025-08-05, retrieved 2025-08-05
  2. ^ Callanan, Ethan and De Venezia, Rebecca and Armstrong, Victoria and Paredes, Alison and Chakraborti, Tathagata and Muise, Christian (2022). MACQ: A Holistic View of Model Acquisition Techniques (PDF). ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (KEPS).{{cite conference}}: CS1 maint: multiple names: authors list (link)
  3. ^ Aineto, Diego and Jiménez Celorrio, Sergio and Onaindia, Eva (2019). "Learning action models with minimal observability". Artificial Intelligence. 275: 104–137. doi:10.1016/j.artint.2019.05.003. hdl:10251/144560.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Jiménez, Sergio and de la Rosa, Tomás and Fernández, Susana and Fernández, Fernando and Borrajo, Daniel (2012). "A review of machine learning for automated planning". The Knowledge Engineering Review. 27 (4): 433–467. doi:10.1017/S026988891200001X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Vidal, Thierry (January 1999). "Handling contingency in temporal constraint networks: from consistency to controllabilities". Journal of Experimental & Theoretical Artificial Intelligence. 11 (1): 23--45. CiteSeerX 10.1.1.107.1065. doi:10.1080/095281399146607.
  6. ^ Neufeld, Xenija and Mostaghim, Sanaz and Sancho-Pradel, Dario and Brand, Sandy (2017). "Building a Planner: A Survey of Planning Systems Used in Commercial Video Games". IEEE Transactions on Games. IEEE.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Sanelli, Valerio and Cashmore, Michael and Magazzeni, Daniele and Iocchi, Luca (2017). Short-term human robot interaction through conditional planning and execution. Proc. of International Conference on Automated Planning and Scheduling (ICAPS). Archived from the original on 2025-08-05. Retrieved 2025-08-05.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  8. ^ Peot, Mark A and Smith, David E (1992). Conditional nonlinear planning (PDF). Artificial Intelligence Planning Systems. Elsevier. pp. 189–197.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  9. ^ Karlsson, Lars (2001). Conditional progressive planning under uncertainty. IJCAI. pp. 431–438.
  10. ^ Liu, Daphne Hao (2008). A survey of planning in intelligent agents: from externally motivated to internally motivated systems (Technical report). Technical Report TR-2008-936, Department of Computer Science, University of Rochester. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  11. ^ Alexandre Albore; Hector Palacios; Hector Geffner (2009). A Translation-Based Approach to Contingent Planning. International Joint Conference of Artificial Intelligence (IJCAI). Pasadena, CA: AAAI. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  12. ^ Littman, Michael L. (1997). Probabilistic Propositional Planning: Representations and Complexity. Fourteenth National Conference on Artificial Intelligence. MIT Press. pp. 748–754. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  13. ^ a b Jussi Rintanen (2004). Complexity of Planning with Partial Observability (PDF). Int. Conf. Automated Planning and Scheduling. AAAI. Archived (PDF) from the original on 2025-08-05. Retrieved 2025-08-05.
  14. ^ De Giacomo, Giuseppe; Rubin, Sasha (2018). Automata-Theoretic Foundations of FOND Planning for LTLf and LDLf Goals. IJCAI. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  15. ^ Palacios, Hector; Geffner, Hector (2009). "Compiling uncertainty away in conformant planning problems with bounded width". Journal of Artificial Intelligence Research. 35: 623–675. arXiv:1401.3468. doi:10.1613/jair.2708. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  16. ^ Albore, Alexandre; Ramírez, Miquel; Geffner, Hector (2011). Effective heuristics and belief tracking for planning with incomplete information. Twenty-First International Conference on Automated Planning and Scheduling (ICAPS). Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  17. ^ Haslum, Patrik; Jonsson, Peter (2000). Some Results on the Complexity of Planning with Incomplete Information. Lecture Notes in Computer Science. Vol. 1809. Springer Berlin Heidelberg. pp. 308–318. doi:10.1007/10720246_24. ISBN 9783540446576. conference: Recent Advances in AI Planning

Further reading

[edit]
[edit]
cpp是什么 电动车是什么电池 精气神是什么意思 孕妇早上吃什么早餐好 拔了牙吃什么消炎药
拉风是什么意思 霉菌阳性是什么意思 擦枪走火什么意思 睡觉时胳膊和手发麻是什么原因 aj是什么牌子
高笋和茭白有什么区别 什么是春梦 女性分泌物带血是什么原因 治疗脚气用什么药 窦性心律逆钟向转位是什么意思
打榜是什么意思 父母宫代表什么 谜底是什么意思 结肠炎有什么症状表现 阴道口瘙痒用什么药
做一半就软了是什么原因0735v.com 大学没毕业算什么学历hcv7jop9ns9r.cn 清真是什么意思sscsqa.com 回乳是什么意思hcv9jop3ns3r.cn 匙仁是牛的什么部位hcv7jop5ns5r.cn
鱿鱼不能和什么一起吃hcv9jop5ns4r.cn 泛性恋是什么意思hcv8jop8ns0r.cn 梦见房子漏水是什么意思hcv9jop0ns4r.cn 刀模是什么hcv8jop7ns6r.cn 血糖高喝什么豆浆好hcv9jop5ns2r.cn
带状疱疹看什么科hcv9jop8ns0r.cn 完全性右束支传导阻滞是什么意思hcv8jop3ns9r.cn 肝在什么位置图片hcv9jop8ns2r.cn 虬是什么动物hcv7jop7ns2r.cn 破釜沉舟是什么意思hcv8jop0ns1r.cn
反复发烧是什么原因引起的zhongyiyatai.com petct是什么hcv9jop6ns4r.cn 连翘败毒丸的功效与作用是什么hcv9jop1ns2r.cn 胃恶心想吐吃什么药0297y7.com 什么时候能测出怀孕hcv8jop0ns1r.cn
百度