pick什么意思| 戊是什么意思| 左卵巢囊性结构是什么意思| 利多卡因是什么| 肾结石吃什么药| 首肯是什么意思| 苹果手机为什么充不进去电| 排骨炖山药有什么功效| 手指甲变薄是什么原因| 吃完饭打嗝是什么原因| 头晕拉肚子是什么情况| 局级是什么级别| 耘字五行属什么| 特发性震颤是什么病| 牙齿抛光是什么意思| 自由意志是什么意思| 静息是什么意思| 鸡为什么吃沙子| 支气管炎吃什么药最有效| 院感是什么意思| 宫颈hsil是什么意思| 男人吃逍遥丸治什么病| 欲言又止是什么意思| 百合花语是什么意思| 为什么打哈欠会流泪| 金玉良缘什么意思| 疟疾是什么病| 男士去皱纹用什么好| 肝郁血瘀吃什么中成药| 红细胞减少是什么原因| 肺结节吃什么药最好| 你要做什么| 发痧是什么原因造成的| 结婚6年是什么婚| 狼狈是什么动物| 3月1日是什么星座| 万亿后面是什么单位| 血液由什么和什么组成| 为什么喝牛奶会长痘| 晚上喝红酒有什么好处和坏处| 心什么神什么| 可乐不能和什么一起吃| 1.4什么星座| 可不是什么意思| 丹毒病是什么原因引起的| dew是什么意思| 畸胎瘤是什么病| 吃花生米是什么意思| 高密度脂蛋白偏高是什么原因| 什么是磁共振| hr是什么单位| 你的脚步流浪在天涯是什么歌曲| 饭后胃胀吃什么药| 黄喉是什么部位| 胃炎是什么原因引起的| 荔枝什么人不能吃| 胸口疼痛挂什么科| 60年属鼠是什么命| 庖丁是什么意思| 什么车不能坐| 什么的工作| 生理期不能吃什么水果| 农历10月19日是什么星座| 青字五行属什么| 霏字五行属什么| 生肖蛇和什么生肖相冲| tia是什么| 什么风大雨| 濒死感是什么感觉| 漫反射是什么意思| 三奇贵人是什么意思| 火龙果什么时候开花| 乌鸦反哺是什么意思| 皇家礼炮是什么酒| sa是什么| 肝火旺吃什么调理| shiraz是什么名字红酒| 爱马仕是什么品牌| 萎缩性胃炎吃什么药最好| 狗狗打喷嚏流鼻涕怎么办吃什么药| 什么叫柏拉图式的爱情| 为什么困但是睡不着| 7月13日是什么星座| 动脉硬化用什么药好| 鸽子和什么炖气血双补| 扫墓是什么意思| 胆怯的什么| 碳素笔是什么笔| 医保断了一个月有什么影响| vad是什么意思| 什么是尿常规检查| 偷什么不犯法| 阴道里面痒是什么原因| 半夏生是什么意思| 藿香正气水什么味道| 经常头疼挂什么科| 外围是什么意思| 早上头晕是什么原因| 149是什么意思| 牛肉馅配什么菜包饺子好吃| 胎儿股骨长是什么意思| 硅油是什么| En什么意思| 唐僧念的紧箍咒是什么| 三七是什么| 医学上cr是什么意思| 正科级是什么级别| 89属什么| 胃总疼是什么原因| 西洋参可以和什么一起泡水喝| 为什么睡久了会头疼| con是什么意思| 见路不走是什么意思| 特别能睡觉是什么原因引起的| 内热是什么意思| 贾琏为什么叫二爷| normal什么意思| zxj是什么意思| 不容乐观是什么意思| 刀郎和那英是什么关系| 办身份证的地方叫什么| 胃炎吃什么中药效果好| 阴道炎挂什么科| 宫颈口在什么位置| 总是低烧是什么原因造成的| 绿色裙子搭配什么颜色上衣| 人丝是什么面料| 梦见偷别人东西是什么意思| 素字五行属什么| 面肌痉挛吃什么药效果好| 吃饭流汗是什么原因| 嬗变是什么意思| 南什么北什么的成语| 大姨妈来能吃什么水果| 眉目传情什么意思| 匹诺曹什么意思| 什么能助睡眠| 血糖高吃什么主食| 人定胜什么| 男人蛋蛋疼是什么原因| 长期喝酒对身体有什么危害| 下眼袋发青是什么原因| mm是什么意思单位| 郑字五行属什么| hpv53阳性是什么意思| 中国什么姓氏人口最多| 少一个睾丸有什么影响| 太子是什么生肖| 什么叫心悸| 吃藕是什么意思| 什么是禅| 铁树开花什么样| 沆瀣一气是什么意思| 小便无力是什么原因男| 531是什么意思| 钢铁侠是什么意思| 淮山是什么| 1978年属什么的| 护理专业是做什么的| 弱冠是什么意思| 红楼梦为什么是四大名著之首| 健身rm是什么意思| 蜂蜜水喝了有什么好处| 十八大什么时候| 总想睡觉是什么原因| 安代表什么生肖| 黄花菜什么人不能吃| 为什么会有生长纹| 翻身是什么意思| 梦见青蛇是什么预兆| 梦见种地是什么意思| 西席是什么意思| 千里单骑是什么生肖| 阿堵物是什么意思| 尿毒症有些什么症状| 口苦口臭吃什么药| 羊奶有什么作用与功效| 什么东西补精子最快| 太原有什么特产| 敖是什么意思| 甲状腺低回声结节是什么意思| 什么原因得湿疹| 蛋白尿是什么颜色| 神经损伤吃什么药最好| 远香近臭是什么意思| 俄罗斯乌克兰为什么打仗| 3.19号是什么星座| 白凉粉是什么做的| 黎明破晓是什么意思| 兔子尾巴像什么| 拔完智齿第三天可以吃什么| 血清碱性磷酸酶高是什么意思| 腹部b超能检查出什么| 囤货是什么意思| 势不可挡是什么意思| 小肚子左边疼是什么原因| 吃荔枝有什么好处| 四大神兽是什么动物| 手热脚凉是什么原因| 落魄是什么意思| 男人说冷静一段时间是什么意思| 1988年属什么今年多大| 什么是尿崩症| 胃病是什么原因引起的| 吃钙片有什么好处| 脑门痒痒是什么预兆| 宽慰是什么意思| 尿隐血什么意思| 化疗后白细胞低吃什么补得快| 2.16是什么星座| 内内是什么意思| roa是什么胎位| 什么时候刮胡子最好| 防晒霜和隔离霜有什么区别| 冬至要注意什么| 博字属于五行属什么| 鼻子旁边的痣代表什么| 屁股生疮是什么原因| 核磁共振什么时候出结果| xxoo是什么意思| 晚上血压高是什么原因| 为什么越睡越困| 金银花搭配什么泡水喝好| 直肠给药对小孩身体有什么影响| 露从今夜白下一句是什么| 明天是什么节日| 孩子咬指甲什么原因| 中枢是什么意思| 桦树茸有什么功效| 肾虚什么症状| 50元人民币什么时候发行的| 舌头有裂纹是什么原因| 英气是什么意思| 蛋白尿吃什么药| 孕前检查挂什么科室| 晋是什么意思| 脑脊液白细胞高是什么原因| 绿色食品是什么意思| 血脂高饮食应注意什么| 什么是根号| 西葫芦炒什么好吃| 骨折后吃什么好的快| 2006年出生的是什么命| 喝牛奶有什么好处| 痛风吃什么好| 凤梨跟菠萝有什么区别| 无脑是什么意思| 孕妇痔疮犯了能用什么药膏| 梦见一坨屎是什么意思| 魄力是什么意思| 尿比重高是什么意思| 肌肉萎缩什么症状| 做梦梦见掉头发是什么意思| 萎缩性胃炎能吃什么水果| 什么的小朋友填词语| 知了吃什么食物| 高三吃什么补脑抗疲劳| 玑是什么意思| leep是什么意思| 按摩有什么好处和坏处| 喝醋有什么好处和坏处| 心猿意马是什么意思| 反驳是什么意思| 6月底是什么星座| 百度Jump to content

东昌府区强力推动教育优质均衡发展 今年解决教师缺职问题

From Wikipedia, the free encyclopedia
百度 在1-6落后的情况下,权健仍旧按部就班的继续踢比赛,赵旭日第79分钟接队友角球传中头槌破门,第89分钟,帕托主罚杨旭制造的点球命中。

Exponential family random graph models (ERGMs) are a set of statistical models used to study the structure and patterns within networks, such as those in social, organizational, or scientific contexts.[1][2][3]They analyze how connections (edges) form between individuals or entities (nodes) by modeling the likelihood of network features, like clustering or centrality, across diverse examples including knowledge networks,[4] organizational networks,[5] colleague networks,[6] social media networks, networks of scientific collaboration,[7] and more. Part of the exponential family of distributions, ERGMs help researchers understand and predict network behavior in fields ranging from sociology to data science.

Background

[edit]

Many metrics exist to describe the structural features of an observed network such as the density, centrality, or assortativity.[8][9] However, these metrics describe the observed network which is only one instance of a large number of possible alternative networks.[10] This set of alternative networks may have similar or dissimilar structural features. To support statistical inference on the processes influencing the formation of network structure, a statistical model should consider the set of all possible alternative networks weighted on their similarity to an observed network. However because network data is inherently relational, it violates the assumptions of independence and identical distribution of standard statistical models like linear regression.[11][2] Alternative statistical models should reflect the uncertainty associated with a given observation, permit inference about the relative frequency about network substructures of theoretical interest, disambiguating the influence of confounding processes, efficiently representing complex structures, and linking local-level processes to global-level properties.[12] Degree-preserving randomization, for example, is a specific way in which an observed network could be considered in terms of multiple alternative networks.

Definition

[edit]

The Exponential family is a broad family of models for covering many types of data, not just networks. An ERGM is a model from this family which describes networks.

Formally a random graph consists of a set of nodes and a collection of tie variables , indexed by pairs of nodes , where if the nodes are connected by an edge and otherwise. A pair of nodes is called a dyad and a dyad is an edge if .

The basic assumption of these models is that the structure in an observed graph can be explained by a given vector of sufficient statistics which are a function of the observed network and, in some cases, nodal attributes. This way, it is possible to describe any kind of dependence between the undyadic variables:

where is a vector of model parameters associated with and is a normalising constant.

These models represent a probability distribution on each possible network on nodes. However, the size of the set of possible networks for an undirected network (simple graph) of size is . Because the number of possible networks in the set vastly outnumbers the number of parameters which can constrain the model, the ideal probability distribution is the one which maximizes the Gibbs entropy.[13]

Example

[edit]

Let be a set of three nodes and let be the set of all undirected, loopless graphs on . Loopless implies that for all it is and undirected implies that for all it is , so that there are three binary tie variables () and different graphs in this example.

Define a two-dimensional vector of statistics by , where is defined to be the number of edges in the graph and is defined to be the number of closed triangles in . Finally, let the parameter vector be defined by , so that the probability of every graph in this example is given by:

We note that in this example, there are just four graph isomorphism classes: the graph with zero edges, three graphs with exactly one edge, three graphs with exactly two edges, and the graph with three edges. Since isomorphic graphs have the same number of edges and the same number of triangles, they also have the same probability in this example ERGM. For a representative of each isomorphism class, we first compute the term , which is proportional to the probability of (up to the normalizing constant ).

If is the graph with zero edges, then it is and , so that

If is a graph with exactly one edge, then it is and , so that

If is a graph with exactly two edges, then it is and , so that

If is the graph with exactly three edges, then it is and , so that

The normalizing constant is computed by summing over all eight different graphs . This yields:

Finally, the probability of every graph is given by . Explicitly, we get that the graph with zero edges has probability , every graph with exactly one edge has probability , every graph with exactly two edges has probability , and the graph with exactly three edges has probability in this example.

Intuitively, the structure of graph probabilities in this ERGM example are consistent with typical patterns of social or other networks. The negative parameter () associated with the number of edges implies that - all other things being equal - networks with fewer edges have a higher probability than networks with more edges. This is consistent with the sparsity that is often found in empirical networks, namely that the empirical number of edges typically grows at a slower rate than the maximally possible number of edges. The positive parameter () associated with the number of closed triangles implies that - all other things being equal - networks with more triangles have a higher probability than networks with fewer triangles. This is consistent with a tendency for triadic closure that is often found in certain types of social networks. Compare these patterns with the graph probabilities computed above. The addition of every edge divides the probability by two. However, when going from a graph with two edges to the graph with three edges, the number of triangles increases by one - which additionally multiplies the probability by three.

We note that the explicit calculation of all graph probabilities is only possible since there are so few different graphs in this example. Since the number of different graphs scales exponentially in the number of tie variables - which in turn scales quadratic in the number of nodes -, computing the normalizing constant is in general computationally intractable, already for a moderate number of nodes. Also for this reason, the possibility of adopting ERGM for the analysis of large networks is attracting increasing attention[14][15]

Sampling from an ERGM

[edit]

Exact sampling from a given ERGM is computationally intractable in general since computing the normalizing constant requires summation over all . Efficient approximate sampling from an ERGM can be done via Markov chains and is applied in current methods to approximate expected values and to estimate ERGM parameters.[16] Informally, given an ERGM on a set of graphs with probability mass function , one selects an initial graph (which might be arbitrarily, or randomly, chosen or might represent an observed network) and implicitly defines transition probabilities (or jump probabilities) , which are the conditional probabilities that the Markov chain is on graph after Step , given that it is on graph after Step . The transition probabilities do not depend on the graphs in earlier steps (), which is a defining property of Markov chains, and they do not depend on , that is, the Markov chain is time-homogeneous. The goal is to define the transition probabilities such that for all it is

independent of the initial graph . If this is achieved, one can run the Markov chain for a large number of steps and then returns the current graph as a random sample from the given ERGM. The probability to return a graph after a finite but large number of update steps is approximately the probability defined by the ERGM.

Current methods for sampling from ERGMs with Markov chains[16] usually define an update step by two sub-steps: first, randomly select a candidate in a neighborhood of the current graph and, second, to accept with a probability that depends on the probability ratio of the current graph and the candidate . (If the candidate is not accepted, the Markov chain remains on the current graph .) If the set of graphs is unconstrained (i.e., contains any combination of values on the binary tie variables), a simple method for candidate selection is to choose one tie variable uniformly at random and to define the candidate by flipping this single variable (i.e., to set ; all other variables take the same value as in ). A common way to define the acceptance probability is to accept with the conditional probability

where the graph probabilities are defined by the ERGM. Crucially, the normalizing constant cancels out in this fraction, so that the acceptance probabilities can be computed efficiently.

See also

[edit]

References

[edit]
  1. ^ Lusher, Dean; Koskinen, Johan; Robins, Garry (2012). Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications (Structural Analysis in the Social Sciences). doi:10.1017/CBO9780511894701. ISBN 9780521141383. OCLC 1120539699.
  2. ^ a b Harris, Jenine K (2014). An introduction to exponential random graph modeling. ISBN 9781452220802. OCLC 870698788.
  3. ^ Amati, Viviana; Lomi, Alessandro; Mira, Antonietta (2025-08-06). "Social Network Modeling". Annual Review of Statistics and Its Application. 5 (1): 343–369. Bibcode:2018AnRSA...5..343A. doi:10.1146/annurev-statistics-031017-100746. ISSN 2326-8298.
  4. ^ Brennecke, Julia; Rank, Olaf (2025-08-06). "The firm's knowledge network and the transfer of advice among corporate inventors—A multilevel network study". Research Policy. 46 (4): 768–783. doi:10.1016/j.respol.2017.02.002. ISSN 0048-7333.
  5. ^ Harris, Jenine K (2013). "Communication Ties Across the National Network of Local Health Departments". AMEPRE American Journal of Preventive Medicine. 44 (3): 247–253. doi:10.1016/j.amepre.2012.10.028. ISSN 0749-3797. OCLC 4937103196. PMID 23415121.
  6. ^ Brennecke, Julia (2019). "Dissonant Ties in Intraorganizational Networks: Why Individuals Seek Problem-Solving Assistance from Difficult Colleagues". AMJ Academy of Management Journal. ISSN 0001-4273. OCLC 8163488129.
  7. ^ Harris, Jenine K; Luke, Douglas A; Shelton, Sarah C; Zuckerman, Rachael B (2009). "Forty Years of Secondhand Smoke Research. The Gap Between Discovery and Delivery". American Journal of Preventive Medicine. 36 (6): 538–548. doi:10.1016/j.amepre.2009.01.039. ISSN 0749-3797. OCLC 6980180781. PMID 19372026.
  8. ^ Wasserman, Stanley; Faust, Katherine (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. ISBN 978-0-521-38707-1.
  9. ^ Newman, M.E.J. (2003). "The Structure and Function of Complex Networks". SIAM Review. 45 (2): 167–256. arXiv:cond-mat/0303516. Bibcode:2003SIAMR..45..167N. doi:10.1137/S003614450342480.
  10. ^ Cimini, Giulio; Squartini, Tiziano; Saracco, Fabio; Garlaschelli, Diego; Gabrielli, Andrea; Caldarelli, Guido (2018). "The Statistical Physics of Real-World Networks". Nature Reviews Physics. 1\pages=58-71: 58–71. arXiv:1810.05095. doi:10.1038/s42254-018-0002-6.
  11. ^ Contractor, Noshir; Wasserman, Stanley; Faust, Katherine (2006). "Testing Multitheoretical, Multilevel Hypotheses About Organizational Networks: An Analytic Framework and Empirical Example" (PDF). Academy of Management Review. 31 (3): 681–703. doi:10.5465/AMR.2006.21318925. S2CID 10837327. Archived from the original (PDF) on 2025-08-06.
  12. ^ Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D. (2007). "An introduction to exponential random graph models for social networks". Social Networks. 29 (2): 173–191. doi:10.1016/j.socnet.2006.08.002. hdl:1959.3/216571.
  13. ^ Newman, M.E.J. (2025-08-06). "Other Network Models". Networks. pp. 565–585. ISBN 978-0-19-920665-0.
  14. ^ Byshkin, Maksym; Stivala, Alex; Mira, Antonietta; Robins, Garry; Lomi, Alessandro (2025-08-06). "Fast Maximum Likelihood Estimation via Equilibrium Expectation for Large Network Data". Scientific Reports. 8 (1): 11509. arXiv:1802.10311. Bibcode:2018NatSR...811509B. doi:10.1038/s41598-018-29725-8. ISSN 2045-2322.
  15. ^ Stivala, Alex; Robins, Garry; Lomi, Alessandro (2025-08-06). "Exponential random graph model parameter estimation for very large directed networks". PLOS ONE. 15 (1): e0227804. arXiv:1904.08063. Bibcode:2020PLoSO..1527804S. doi:10.1371/journal.pone.0227804. ISSN 1932-6203. PMC 6980401. PMID 31978150.
  16. ^ a b Hunter, D. R; Handcock, M. S. (2006). "Inference in curved exponential family models for networks". Journal of Computational and Graphical Statistics. 15 (3): 565–583. CiteSeerX 10.1.1.205.9670. doi:10.1198/106186006X133069.

Further readings

[edit]
结婚需要什么证件 720是什么意思 牙疼吃什么菜降火最快 促甲状腺激素低是什么原因 女生的隐私长什么样子
到底什么是爱 病是什么结构的字 tissot是什么牌子1853 命根子是什么 肝损伤吃什么药
全棉和纯棉有什么区别 什么时候大暑 什么的松脂 来之不易是什么意思 老是掉发是什么原因
inr医学上是什么意思 孢子是什么东西 腮腺炎的症状是什么 纯度是什么意思 鹿米念什么
黄精药材有什么功效hcv7jop6ns3r.cn 无力感什么意思wzqsfys.com 火眼是什么症状hcv8jop7ns9r.cn 脂肪是什么意思hcv8jop9ns8r.cn 右侧肋骨下面是什么器官hkuteam.com
血糖高什么不能吃hcv8jop2ns6r.cn 石斛与什么搭配最好hcv8jop1ns9r.cn 带状疱疹什么不能吃hcv8jop6ns2r.cn 全套半套什么意思hcv8jop7ns6r.cn 糖筛和糖耐有什么区别sanhestory.com
稽留流产什么意思hcv9jop0ns6r.cn 梦见陌生人死了是什么意思hcv7jop7ns1r.cn 吃什么长胎不长肉hcv7jop9ns8r.cn 嘴角长疱疹是什么原因hcv8jop7ns1r.cn 人为什么需要诗歌hcv9jop4ns3r.cn
淀粉样变性是什么病hcv7jop5ns4r.cn 经常挖鼻孔有什么危害wuhaiwuya.com 女生被插是什么感觉hcv8jop2ns4r.cn 纷扰是什么意思hcv9jop7ns1r.cn 低血压高什么原因hcv9jop2ns1r.cn
百度