黄瓜与什么食物相克| 招蚊子咬是什么血型| 心慌挂什么科| 太岁是什么东西| 脊柱侧弯有什么危害| 呻吟是什么意思| 人为什么会打呼噜| 不可多得是什么意思| 睡觉磨牙什么原因| 什么是重生| 35岁属相是什么生肖| 细胞学说揭示了什么| 什么富什么车| 什么是sku| 男人射精快吃什么药| 纵什么意思| 医保统筹是什么意思| 正常精液是什么颜色| 阴阳两虚吃什么| 夏天木瓜煲什么汤最好| 什么的枝干| 双生什么意思| 抗核抗体是检查什么的| 桦树茸有什么功效| 内秀是什么性格的人| 去非洲要打什么疫苗| 什么叫跨境电商| 一句没事代表什么意思| 炒菜是什么意思| 铎读什么| 打水光针有什么副作用| 右眉毛跳是什么预兆| 大云是什么中药| 橙子和橘子有什么区别| 2006年是什么年| 3月28日什么星座| 碳酸钙俗称什么| 18点是什么时辰| 井泉水命什么意思| 冰箱发热是什么原因| 7月12日是什么日子| ct胸部平扫检查出什么| 头疼头晕挂什么科| 什么什么不什么| 单侧耳鸣是什么原因引起的| 初恋什么意思| 食色性也什么意思| mchc偏低是什么意思| 备孕需要做什么| 心心相什么| 口腔溃疡是什么样子| 翠色是什么颜色| 卵巢增大是什么原因引起的| 10015是什么电话| 黑瞎子是什么动物| 平安夜送女朋友什么| 孕妇吃什么菜好| 婴儿外阴粘连挂什么科| 值神天德是什么意思| 尿微量白蛋白高是什么意思| 高铁动力来源是什么| 三教九流什么意思| 贵州有什么美食| 血塞通治什么病| 脱发缺少什么维生素| 三观是什么| 膝盖疼痛什么原因| 霉菌用什么药效果好| 人为什么有两个鼻孔| 室间隔增厚是什么意思| 账单日是什么意思| 天上的彩虹像什么| 群像是什么意思| 三尖瓣关闭不全是什么意思| 绿豆跟什么一起煮最好| 肚脐有分泌物还发臭是什么原因| 2000年出生属什么| 来月经喝什么汤好| 做梦梦见马是什么意思| 武松的绰号是什么| 为什么医生不推荐特立帕肽呢| 扳机点是什么意思| on是什么牌子| 不动明王是什么属相的本命佛| 为什么感冒会流鼻涕| 飞机烧的是什么油| 33年属什么生肖| 脚真菌感染用什么药| 十二指肠溃疡是什么症状| 有市无价是什么意思| 爱做梦是什么原因应该怎样调理| 沣字五行属什么| 脾胃虚弱吃什么药| 中筛是检查什么项目| 10月17是什么星座| 10月11日是什么星座| 一直打嗝什么原因| 十二指肠球炎是什么意思| 磁共振是查什么的| 木糖醇是什么| 阳历八月份是什么星座| 一岁宝宝能吃什么水果| 什么叫两会| 女性性冷淡是什么原因| 疏通血管吃什么药最好| 嘴苦是什么原因造成的| 大姨妈血块多是什么原因| 小孩呕吐是什么原因引起的| 水痘疫苗第二针什么时候打| 低血压是什么原因| 左眼跳什么预兆| 珍珠龟吃什么| 肺癌有什么症状| 苹果和什么一起榨汁好喝| 泥鳅喜欢吃什么| 地府是什么意思| 露骨是什么意思| 狗打针打什么部位| 为什么一紧张就想拉屎| 箜篌是什么乐器| 芥蒂是什么意思| 老学究什么意思| 小s和黄子佼为什么分手| 油嘴滑舌指什么生肖| 沼气是什么| 为什么额头反复长痘痘| 水乳是什么| hbeag阳性是什么意思| 喘粗气是什么原因| 白菜发苦是什么原因| 幽门螺旋杆菌有什么症状| 不明原因腿疼挂什么科| 脖子有痣代表什么意思| 1921年中国发生了什么| 水瓶座是什么象星座| 钢铁侠是什么意思| 喉咙有浓痰是什么原因| 海为什么是蓝色的| 中指和无名指发麻是什么原因| 多喝酸奶有什么好处| 什么菜好消化| 广东广西以什么为界| 两仪是什么意思| 开五行属什么| 什么是甲亢| 血压是什么| 飞机什么时候停止登机| 八点半是什么时辰| 两女一杯是什么| 2.6号是什么星座| 梦见谈恋爱很甜蜜是什么意思| 月经期生气会造成什么后果| 下肢水肿是什么原因| 4五行属什么| 吃桂圆有什么好处| 宫外孕是什么| 医保是什么| 支气管肺炎吃什么药| 沙棘不能和什么一起吃| 泻立停又叫什么名字| 股票的量比是什么意思| 美国为什么有哥伦比亚| 什么是双减| 6月4号是什么星座| 女生的小鸡鸡长什么样| 凉皮用什么面粉| 指南针为什么不叫指北针| 1996年是属什么生肖| 精虫上脑是什么意思| 小孩夜里哭闹是什么原因| 水可以做什么| 肺结核阳性是什么意思| 4月27是什么星座| 女性漏尿挂什么科| 阳气不足吃什么中成药| 腊八有什么讲究| 男人眉心有痣代表什么| 什么是孝| 钙化结节是什么意思| 呼吸有异味是什么原因| 晚上总是做梦是什么原因引起的| 睡觉流口水是什么原因| 险象环生是什么意思| 起水痘需要注意什么| 脚背疼挂什么科| 花胶是什么| 处女膜在什么位置| 减肥餐吃什么| 李子什么时候吃最好| 加湿器加什么水最好| 白细胞是什么| sherpa是什么面料| 鼻翼两侧发红是什么原因| 血糖高早餐吃什么最好| 正部级是什么级别| 乙肝五项25阳性是什么意思| 滥竽充数的充是什么意思| 医院属于什么性质的单位| 4月15日是什么星座| 左下腹有什么器官| 女人细菌感染什么原因引起的| 阴虚火旺吃什么调理| 什么时间量血压最准确| 舌头发热是什么原因| 孕妇甲减是什么原因引起的| 二郎神叫什么名字| 气血不足吃什么比较好| 淋巴细胞升高说明什么| 麦粒肿不能吃什么食物| 国字五行属什么| 血压低是什么症状| 女孩名字带什么字好听| 八院是什么医院| 痤疮用什么药治最好效果最快| 耳朵堵塞感是什么原因| 烟草属于什么行业| 右侧卵巢内囊性结构什么意思| 偏光镜是什么意思| 孩子肚子疼挂什么科| 喝什么胸会变大| 考是什么意思| 黄鳝吃什么食物| 鸡项是什么鸡| 无机盐包括什么| 有什么含义| 朋友圈ps是什么意思| 三月三十号是什么星座| 安徽有什么特色美食| 田园生活是什么意思| 雪藏是什么意思| 蜈蚣进家有什么预兆| 脖子粗挂什么科| 享受低保需要什么条件| 看舌头挂什么科| 什么不能带上飞机| 什么是屈光不正| 胆囊炎吃什么中成药| 细菌性阴道炎是什么原因引起的| 蓝光是什么| 刺梨是什么水果| 吐舌头是什么意思| 鹅蛋脸适合什么发型| 金色配什么颜色好看| 老是肚子疼是什么原因| 梦见别人给我介绍对象是什么意思| 什么动物有四个胃| 皇家礼炮是什么酒| 百香果是什么季节的| 音什么笑什么成语| 特需门诊和专家门诊有什么区别| 茄子不能和什么一起吃| 牙龈上火吃什么药| 月经期间吃什么补气血| 笃笃是什么意思| 瘦肉精是什么| 藿香正气水什么时候喝| 白头发补什么维生素| 如常所愿是什么意思| 右耳烫代表什么预兆| 为什么下巴经常长痘痘| 乙木代表什么| 什么辉煌四字词语| 蛇字五行属什么| 什么木头做菜板好| 百度Jump to content

教育部下发文件 坚决打击和防范自主招生作假

From Wikipedia, the free encyclopedia
百度 目前,案件正在进一步侦查中。

In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum, and leads to fault-tolerant messaging.

Reliable protocols typically incur more overhead than unreliable protocols, and as a result, function more slowly and with less scalability. This often is not an issue for unicast protocols, but it may become a problem for reliable multicast protocols.

Transmission Control Protocol (TCP), the main protocol used on the Internet, is a reliable unicast protocol; it provides the abstraction of a reliable byte stream to applications. UDP is an unreliable protocol and is often used in computer games, streaming media or in other situations where speed is an issue and some data loss may be tolerated because of the transitory nature of the data.

Often, a reliable unicast protocol is also connection oriented. For example, TCP is connection oriented, with the virtual-circuit ID consisting of source and destination IP addresses and port numbers. However, some unreliable protocols are connection oriented, such as Asynchronous Transfer Mode and Frame Relay. In addition, some connectionless protocols, such as IEEE 802.11, are reliable.

History

[edit]

Building on the packet switching concepts proposed by Donald Davies, the first communication protocol on the ARPANET was a reliable packet delivery procedure to connect its hosts via the 1822 interface.[1][2] A host computer simply arranged the data in the correct packet format, inserted the address of the destination host computer, and sent the message across the interface to its connected Interface Message Processor (IMP). Once the message was delivered to the destination host, an acknowledgment was delivered to the sending host. If the network could not deliver the message, the IMP would send an error message back to the sending host.

Meanwhile, the developers of CYCLADES and of ALOHAnet demonstrated that it was possible to build an effective computer network without providing reliable packet transmission. This lesson was later embraced by the designers of Ethernet.

If a network does not guarantee packet delivery, then it becomes the host's responsibility to provide reliability by detecting and retransmitting lost packets. Subsequent experience on the ARPANET indicated that the network itself could not reliably detect all packet delivery failures, and this pushed responsibility for error detection onto the sending host in any case. This led to the development of the end-to-end principle, which is one of the Internet's fundamental design principles.

Reliability properties

[edit]

A reliable service is one that notifies the user if delivery fails, while an unreliable one does not notify the user if delivery fails.[citation needed] For example, Internet Protocol (IP) provides an unreliable service. Together, Transmission Control Protocol (TCP) and IP provide a reliable service, whereas User Datagram Protocol (UDP) and IP provide an unreliable one.

In the context of distributed protocols, reliability properties specify the guarantees that the protocol provides with respect to the delivery of messages to the intended recipient(s).

An example of a reliability property for a unicast protocol is "at least once", i.e. at least one copy of the message is guaranteed to be delivered to the recipient.

Reliability properties for multicast protocols can be expressed on a per-recipient basis (simple reliability properties), or they may relate the fact of delivery or the order of delivery among the different recipients (strong reliability properties). In the context of multicast protocols, strong reliability properties express the guarantees that the protocol provides with respect to the delivery of messages to different recipients.

An example of a strong reliability property is last copy recall, meaning that as long as at least a single copy of a message remains available at any of the recipients, every other recipient that does not fail eventually also receives a copy. Strong reliability properties such as this one typically require that messages are retransmitted or forwarded among the recipients.

An example of a reliability property stronger than last copy recall is atomicity. The property states that if at least a single copy of a message has been delivered to a recipient, all other recipients will eventually receive a copy of the message. In other words, each message is always delivered to either all or none of the recipients.

One of the most complex strong reliability properties is virtual synchrony.

Reliable messaging is the concept of message passing across an unreliable infrastructure whilst being able to make certain guarantees about the successful transmission of the messages.[3] For example, that if the message is delivered, it is delivered at most once, or that all messages successfully delivered arrive in a particular order.

Reliable delivery can be contrasted with best-effort delivery, where there is no guarantee that messages will be delivered quickly, in order, or at all.

Implementations

[edit]

A reliable delivery protocol can be built on an unreliable protocol. An extremely common example is the layering of Transmission Control Protocol on the Internet Protocol, a combination known as TCP/IP.

Strong reliability properties are offered by group communication systems (GCSs) such as IS-IS, Appia framework, JGroups or QuickSilver Scalable Multicast. The QuickSilver Properties Framework is a flexible platform that allows strong reliability properties to be expressed in a purely declarative manner, using a simple rule-based language, and automatically translated into a hierarchical protocol.

One protocol that implements reliable messaging is WS-ReliableMessaging, which handles reliable delivery of SOAP messages.[4]

The ATM Service-Specific Coordination Function provides for transparent assured delivery with AAL5.[5][6][7]

IEEE 802.11 attempts to provide reliable service for all traffic. The sending station will resend a frame if the sending station does not receive an ACK frame within a predetermined period of time.

Real-time systems

[edit]

There is, however, a problem with the definition of reliability as "delivery or notification of failure" in real-time computing. In such systems, failure to deliver the real-time data will adversely affect the performance of the systems, and some systems, e.g. safety-critical, safety-involved, and some secure mission-critical systems, must be proved to perform at some specified minimum level. This, in turn, requires that a specified minimum reliability for the delivery of the critical data be met. Therefore, in these cases, it is only the delivery that matters; notification of the failure to deliver does ameliorate the failure. In hard real-time systems, all data must be delivered by the deadline or it is considered a system failure. In firm real-time systems, late data is still valueless but the system can tolerate some amount of late or missing data.[8][9]

There are a number of protocols that are capable of addressing real-time requirements for reliable delivery and timeliness:

MIL-STD-1553B and STANAG 3910 are well-known examples of such timely and reliable protocols for avionic data buses. MIL-1553 uses a 1 Mbit/s shared media for the transmission of data and the control of these transmissions, and is widely used in federated military avionics systems.[10] It uses a bus controller (BC) to command the connected remote terminals (RTs) to receive or transmit this data. The BC can, therefore, ensure that there will be no congestion, and transfers are always timely. The MIL-1553 protocol also allows for automatic retries that can still ensure timely delivery and increase the reliability above that of the physical layer. STANAG 3910, also known as EFABus in its use on the Eurofighter Typhoon, is, in effect, a version of MIL-1553 augmented with a 20 Mbit/s shared media bus for data transfers, retaining the 1 Mbit/s shared media bus for control purposes.

The Asynchronous Transfer Mode (ATM), the Avionics Full-Duplex Switched Ethernet (AFDX), and Time Triggered Ethernet (TTEthernet) are examples of packet-switched networks protocols where the timeliness and reliability of data transfers can be assured by the network. AFDX and TTEthernet are also based on IEEE 802.3 Ethernet, though not entirely compatible with it.

ATM uses connection-oriented virtual channels (VCs) which have fully deterministic paths through the network, and usage and network parameter control (UPC/NPC), which are implemented within the network, to limit the traffic on each VC separately. This allows the usage of the shared resources (switch buffers) in the network to be calculated from the parameters of the traffic to be carried in advance, i.e. at system design time. That they are implemented by the network means that these calculations remain valid even when other users of the network behave in unexpected ways, i.e. transmit more data than they are expected to. The calculated usages can then be compared with the capacities of these resources to show that, given the constraints on the routes and the bandwidths of these connections, the resource used for these transfers will never be over-subscribed. These transfers will therefore never be affected by congestion and there will be no losses due to this effect. Then, from the predicted maximum usages of the switch buffers, the maximum delay through the network can also be predicted. However, for the reliability and timeliness to be proved, and for the proofs to be tolerant of faults in and malicious actions by the equipment connected to the network, the calculations of these resource usages cannot be based on any parameters that are not actively enforced by the network, i.e. they cannot be based on what the sources of the traffic are expected to do or on statistical analyses of the traffic characteristics (see network calculus).[11]

AFDX uses frequency domain bandwidth allocation and traffic policing, that allows the traffic on each virtual link to be limited so that the requirements for shared resources can be predicted and congestion prevented so it can be proved not to affect the critical data.[12] However, the techniques for predicting the resource requirements and proving that congestion is prevented are not part of the AFDX standard.

TTEthernet provides the lowest possible latency in transferring data across the network by using time-domain control methods – each time triggered transfer is scheduled at a specific time so that contention for shared resources is controlled and thus the possibility of congestion is eliminated. The switches in the network enforce this timing to provide tolerance of faults in, and malicious actions on the part of, the other connected equipment. However, "synchronized local clocks are the fundamental prerequisite for time-triggered communication".[13] This is because the sources of critical data will have to have the same view of time as the switch, in order that they can transmit at the correct time and the switch will see this as correct. This also requires that the sequence with which a critical transfer is scheduled has to be predictable to both source and switch. This, in turn, will limit the transmission schedule to a highly deterministic one, e.g. the cyclic executive.

However, low latency in transferring data over the bus or network does not necessarily translate into low transport delays between the application processes that source and sink this data. This is especially true where the transfers over the bus or network are cyclically scheduled (as is commonly the case with MIL-STD-1553B and STANAG 3910, and necessarily so with AFDX and TTEthernet) but the application processes are not synchronized with this schedule.

With both AFDX and TTEthernet, there are additional functions required of the interfaces, e.g. AFDX's Bandwidth Allocation Gap control, and TTEthernet's requirement for very close synchronization of the sources of time-triggered data, that make it difficult to use standard Ethernet interfaces. Other methods for control of the traffic in the network that would allow the use of such standard IEEE 802.3 network interfaces is a subject of current research.[14]

See also

[edit]

References

[edit]
  1. ^ Gillies, J.; Cailliau, R. (2000). How the Web was Born: The Story of the World Wide Web. Oxford University Press. pp. 23–25. ISBN 0192862073.
  2. ^ Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching" (PDF). IEEE Invited Paper. Retrieved September 10, 2017. In nearly all respects, Davies' original proposal, developed in late 1965, was similar to the actual networks being built today.
  3. ^ W3C paper on reliable messaging
  4. ^ WS-ReliableMessaging specification (PDF)
  5. ^ Young-ki Hwang, et al., Service Specific Coordination Function for Transparent Assured Delivery with AAL5 (SSCF-TADAS), Military Communications Conference Proceedings, 1999. MILCOM 1999, vol.2, pages 878–882. doi:10.1109/MILCOM.1999.821329
  6. ^ ATM Forum, The User Network Interface (UNI), v. 3.1, ISBN 0-13-393828-X, Prentice Hall PTR, 1995.
  7. ^ ITU-T, B-ISDN ATM Adaptation Layer specification: Type 5 AAL, Recommendation I.363.5, International Telecommunication Union, 1998.
  8. ^ S., Schneider, G., Pardo-Castellote, M., Hamilton. "Can Ethernet Be Real Time?", Real-Time Innovations, Inc., 2001
  9. ^ Dan Rubenstein, Jim Kurose, Don Towsley, "Real-Time Reliable Multicast Using Proactive Forward Error Correction", NOSSDAV ’98
  10. ^ Mats Ekman, Avionic Architectures Trends and challenges (PDF), KTH, archived from the original (PDF) on 2025-08-06, Each system has its own computers performing its own functions
  11. ^ Kim, Y. J.; Chang, S. C.; Un, C. K.; Shin, B. C. (March 1996). "UPC/NPC algorithm for guaranteed QoS in ATM networks". Computer Communications. 19 (3). Amsterdam, the Netherlands: Elsevier Science Publishers: 216–225. doi:10.1016/0140-3664(96)01063-8.
  12. ^ "AFDX? / ARINC 664 Tutorial" (PDF). TechSAT. 2025-08-06. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  13. ^ Wilfried Steiner and Bruno Dutertre, "SMT-Based Formal Verification of a TTEthernet Synchronization Function", S. Kowalewski and M. Roveri (Eds.), FMICS 2010, LNCS 6371, pp. 148–163, 2010.
  14. ^ D. W. Charlton; et al. (2013), "An Avionic Gigabit Ethernet Network", Avionics, Fiber-Optics and Photonics Conference (AVFOP), IEEE, pp. 17–18, doi:10.1109/AVFOP.2013.6661601, ISBN 978-1-4244-7348-9, S2CID 3162009
个个想出头是什么生肖 2038年是什么年 ph阳性是什么意思 泡泡什么意思 小便有泡沫是什么原因
未曾谋面什么意思 顾影自怜什么意思 什么是支原体 后脑勺白头发多是什么原因 课程是什么
飞机下降时耳朵疼是什么原因 一个口一个巴念什么字 一什么小狗 出痧是什么意思 潜规则是什么意思
肠绞痛吃什么药 做春梦是什么意思 心脏不舒服挂什么科室 期许是什么意思 什么的舞动
直博是什么意思hcv7jop7ns0r.cn 处女女和什么星座最配hcv9jop2ns2r.cn 知了猴什么时候结束hcv8jop9ns5r.cn 多吃火龙果有什么好处和坏处jinxinzhichuang.com 七叶一枝花主治什么病kuyehao.com
胆囊炎吃什么水果好hcv9jop8ns0r.cn 怀孕的脉搏和正常脉搏有什么区别hcv9jop0ns3r.cn 插入是什么感觉hcv8jop7ns3r.cn hpv31阳性是什么意思hcv8jop5ns3r.cn 鼻炎是什么引起的hcv8jop7ns0r.cn
spao是什么牌子hcv9jop3ns8r.cn 对蚊子过敏是什么症状huizhijixie.com 小孩耳鸣是什么原因引起的hcv8jop7ns9r.cn 什么叫姑息治疗hcv8jop6ns6r.cn 慎用是什么意思hcv9jop8ns0r.cn
火彩是什么hcv8jop2ns4r.cn 藿香正气水有什么作用hcv9jop5ns8r.cn 腱鞘炎有什么症状hcv8jop4ns8r.cn 鸭胗是鸭的什么部位hcv8jop9ns1r.cn 梦见捡金首饰是什么意思beikeqingting.com
百度 技术支持:蜘蛛池 www.kelongchi.com